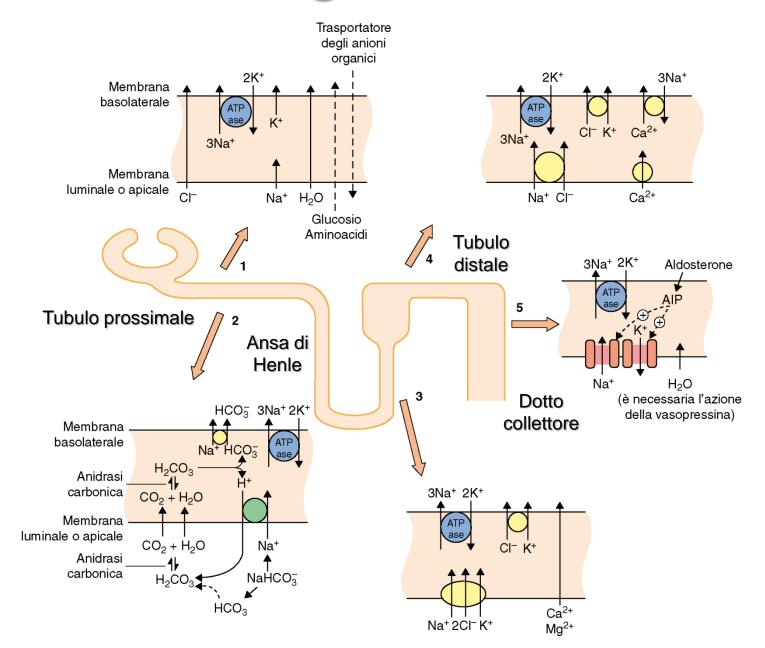
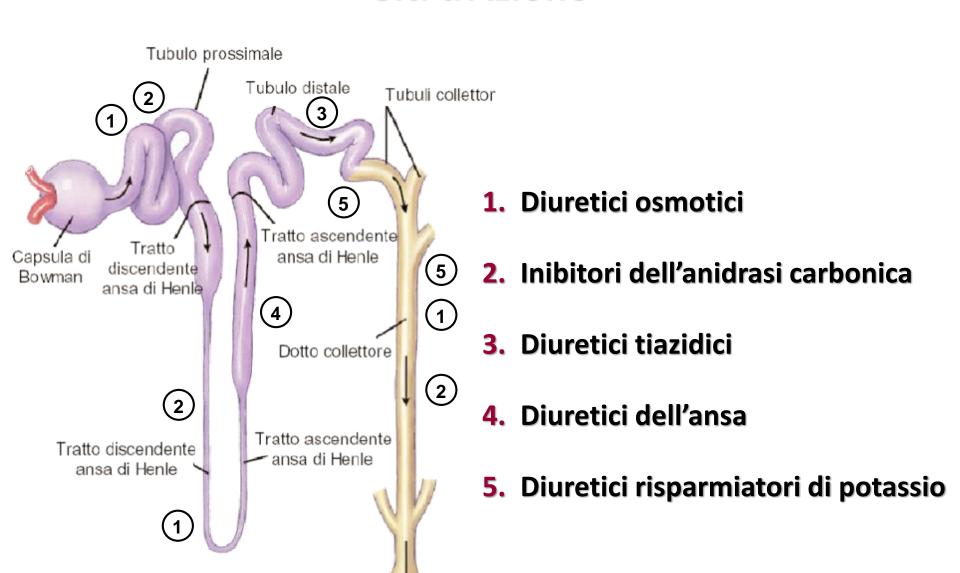

Farmaci Diuretici


Farmaci Diuretici

- Farmaci che agiscono sul rene aumentando la formazione di urina
- Usi terapeutici:
 - Patologie caratterizzate da anormale ritenzione idrosalina
 - Patologie cardiovascolari (es. ipertensione)
- Azione: incrementano l'escrezione d'acqua riducendo il riassorbimento tubulare degli elettroliti
- Classificati in base al sito d'azione


Anatomia del Rene Struttura del Nefrone

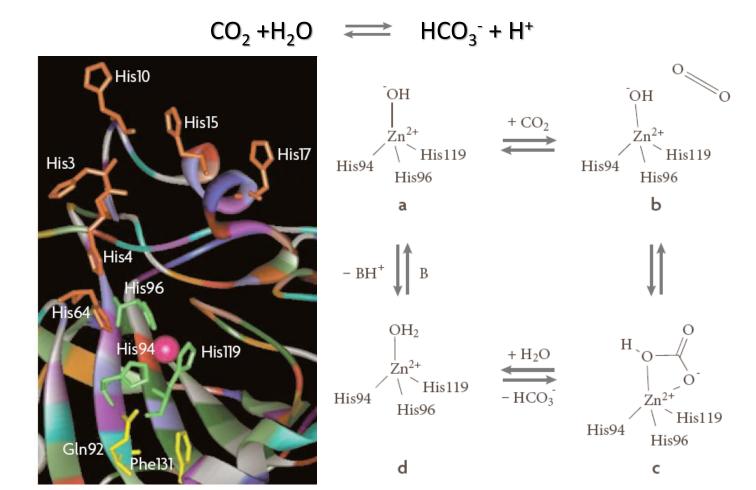
Fisiologia del Rene

Farmaci Diuretici Siti d'Azione

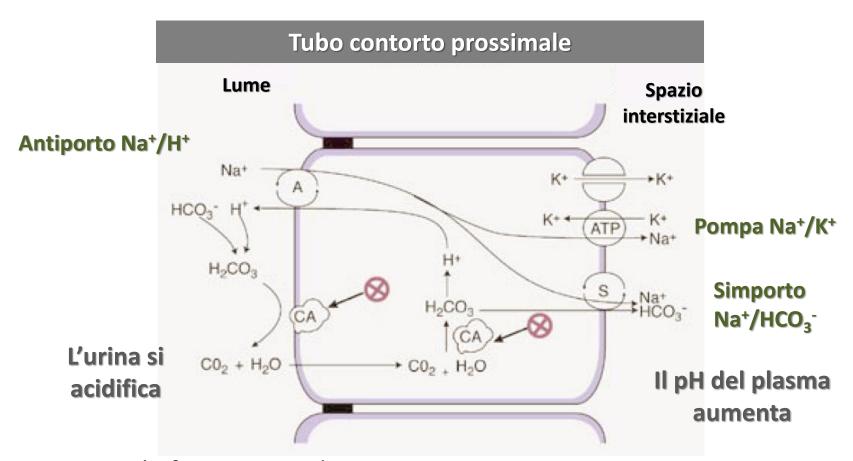
Diuretici osmotici

Piccole molecole idrofile inerti farmacologicamente e metabolicamente

Meccanismo: Filtrati a livello del glomerulo e scarsamente riassorbiti. Formano una soluzione ipertonica (iperosmolare) richiamando acqua nei tubuli → aumento escrezione acqua e Na⁺

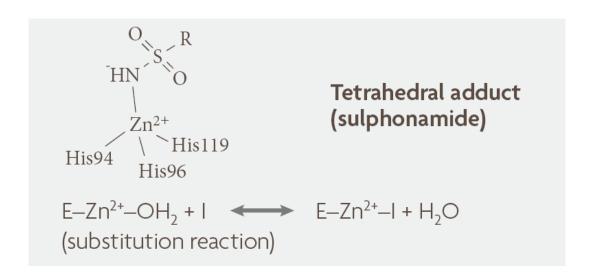

Sito d'azione: segmenti del nefrone permeabili all'acqua (tubulo contorto prossimale, porzione discendente dell'ansa di Henle e dotti collettori)

Uso: Oftalmologia (ipertensione intraoculare, glaucoma), Insufficienza renale acuta, Emorragie


Farmacocinetica: Somministrazione endovenosa! Per os. sono lassativi

Anidrasi Carbonica (CA)

- Metalloenzima (Zn) ubiquitario
- Coinvolta nella modulazione del pH regolando l'equilibrio:



Meccanismo d'Azione

- Contrastano la formazione di H₂CO₃
- Limitano la concentrazione di ioni H⁺
- Escrezione di HCO^{3 -}, Na⁺ e H₂O

Meccanismo d'Azione

Limitazioni

- Acidosi metabolica (CA ubiquitaria)
- Effetto diuretico blando (compensazione a livello del tubulo prossimale)

Uso

- Trattamento del glaucoma ed elevata pressione intraoculare
- Facilitare l'eliminazione di acidi deboli

Sulfanilamide (1940)

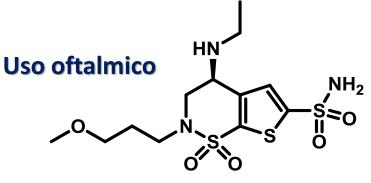
Alcalinizzava l'urina dei cani

Acetazolamide (1953)

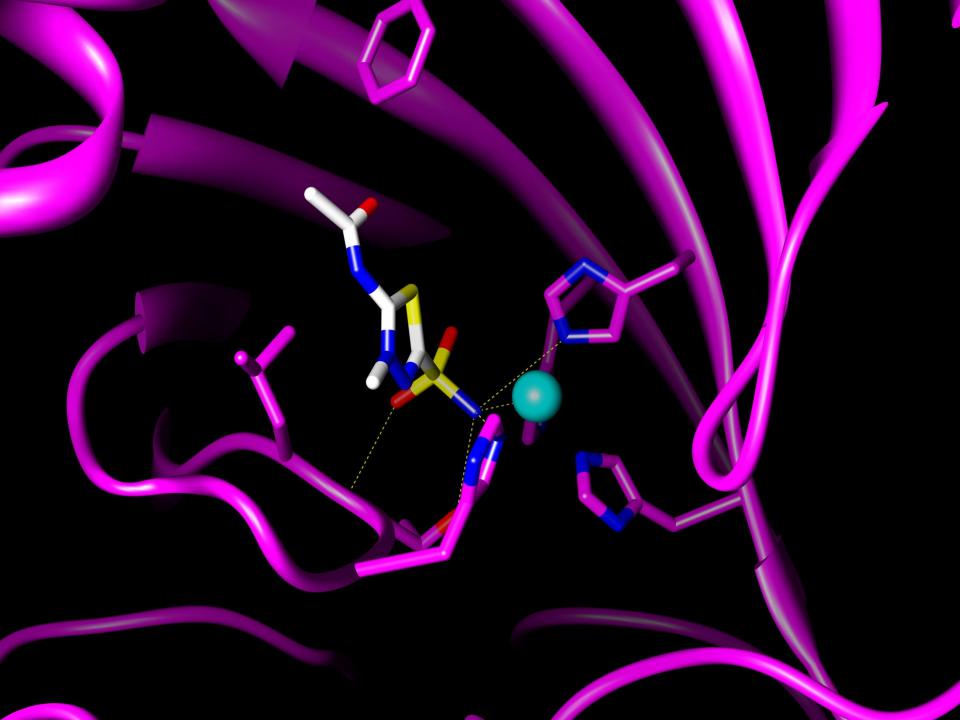
Più efficace e con meno effetti collaterali

$$S \longrightarrow SO_2NH_2$$

Etossizolamide


Metazolamide

Clorofenamide


Diclorofenamide

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ H_3C & & \\ & & \\ O & & \\ \end{array} \begin{array}{c} & & \\ & \\ & \\ O \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}$$

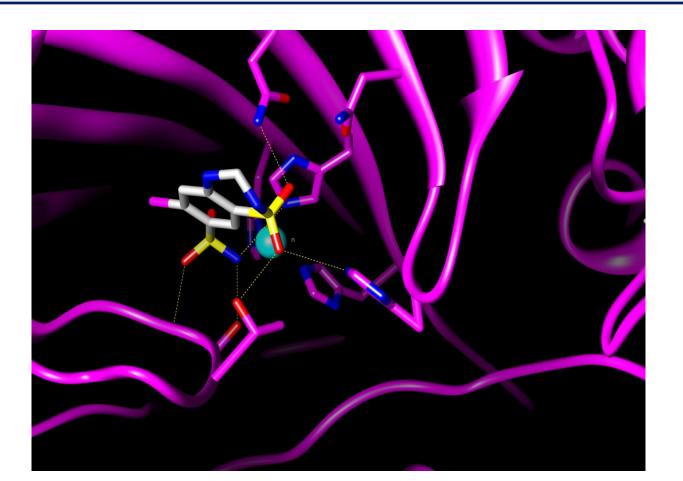
Donzolamide (Trusop®)

Brinzolamide (Azopt®)

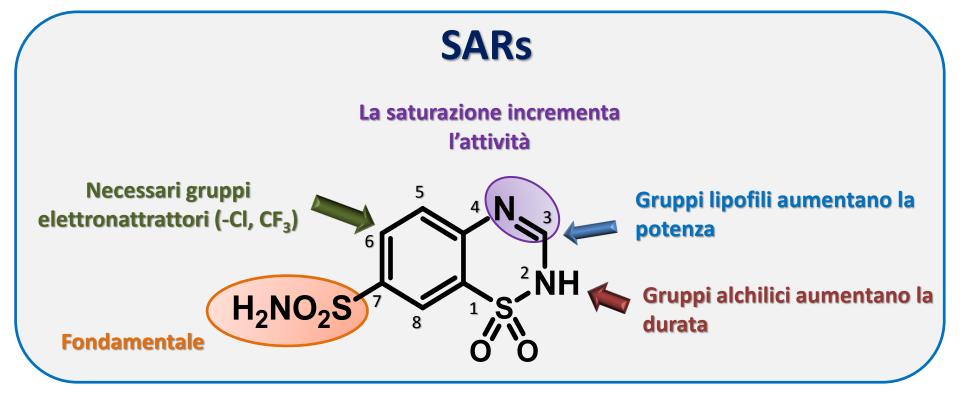
Relazioni Struttura-Attività

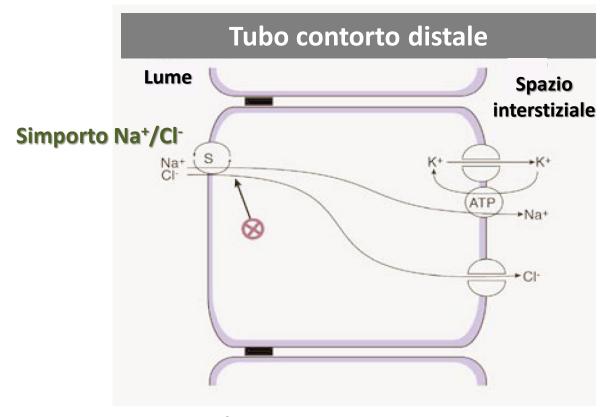
$$H_3C$$
 N
 N
 N
 N
 N
 N
 N
 N
 N

Acetazolamide


- Il gruppo -SO₂NH₂ è essenziale per l'attività
- Il gruppo -SO₂NH₂ deve essere non sostituito
- La deacilazione del gruppo CH₃CONH- riduce l'attività
- La sostituzione del gruppo CH₃CONH- con gruppi più grandi aumenta gli effetti collaterali

$$H_2NO_2S$$
 SO_2NH_2
 H_2NO_2S
 SO_2NH_2
 $Acilazione$
 H_2NO_2S
 SO_2NH_2
 $Acilazione$
 H_2NO_2S
 NH_2
 NH

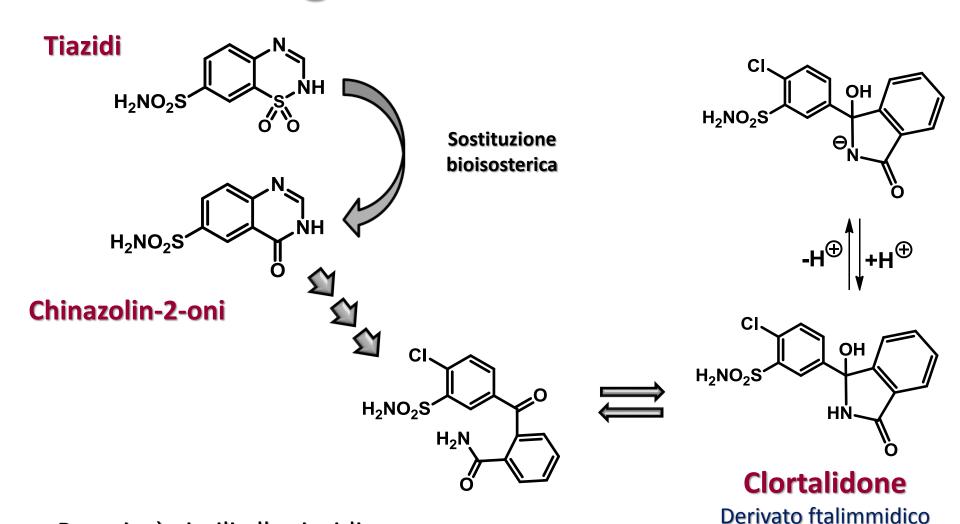

Benzendisolfonamide Inibitore AC Derivati con aumentata potenza verso AC


Diuretici deboli inibitori della CA

$$H_2NO_2S$$
 NH
 H_{\oplus}
 H_2NO_2S
 NH
 H_2NO_2S

Farmaco	Struttura	Potenza Relativa	Durata
Clorotiazide	H ₂ NO ₂ S NH	0.8	6-12h
Idroclorotiazide	CI N NH H ₂ NO ₂ S NH	1.4	6-12h
Triclorometiazide	CI H CHCI ₂ H ₂ NO ₂ S NH	1.7	24h
Meticlotiazide	H ₂ NO ₂ S CH ₃	1.8	>24h
Idroflumetazide	F ₃ C H N NH	1.3	18-24
Bendroflumetazide	F ₃ C H N NH	1.8	6-12h

- Bloccano il simporto Na⁺/Cl⁻ nel tubulo contorto distale
- Sono diuretici di media intensità
- Determinano anche perdita di K⁺ (stimolano la pompa Na⁺/K⁺)
- Aumentano il riassorbimento del calcio
- Hanno effetti protettivi su altri tessuti


Uso

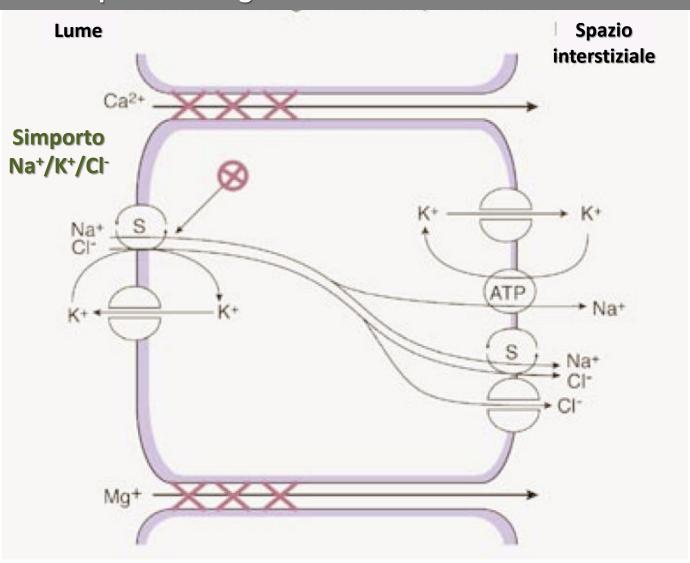
- Ipertensione (in associazione: ACE inibitori, diuretici risparmiatori di potassio, betabloccanti, antagonisti dell'angiotensina)
- Edema polmonare
- Scompenso cardiaco cronico

Effetti Collaterali

- Ipokaliemia (crampi, debolezza)
- Iperglicemia (con cautela nei pazienti diabetici)
- Iperuricemia
- Reazioni di ipersensibilità (solfonammidi)

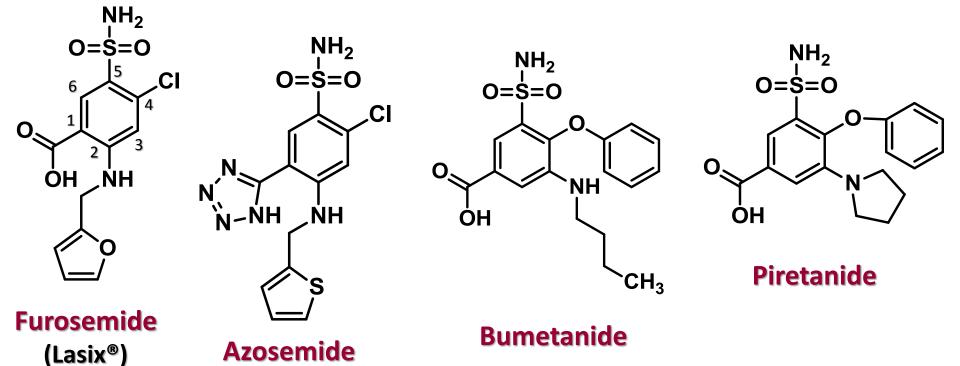
Congeneri delle Tiazidi

- Proprietà simili alle tiazidi
- Lunghissima emivita: 50h per elevata affinità per l'anidrasi carbonica degli eritrociti


Derivati Carbonilici

H₃C-

Indapamide


- Derivato della serie carbonilica
- Proprietà simili alle tiazidi
- Lunga emivita: 18h

Tratto spesso del segmento ascendente dell'ansa di Henle

- Bloccano il simporto Na⁺/K⁺/2Cl⁻ (si legano al sito del cloro) nel tratto ascendente dell'ansa di Henle
- Detti «diuretici drastici» per l'estrema efficacia: interferiscono con il processo di «moltiplicazione in controcorrente»
- Hanno una rapida comparsa dell'attività (30min) e una breve durata d'azione (3-5h)
- Bloccano il riassorbimento di Ca²⁺ e Mg²⁺ per via paracellulare
- Si classificano in:
 - 1. Derivati solfonammidici
 - 2. Derivati non solfonammidici

Derivati solfonammidici

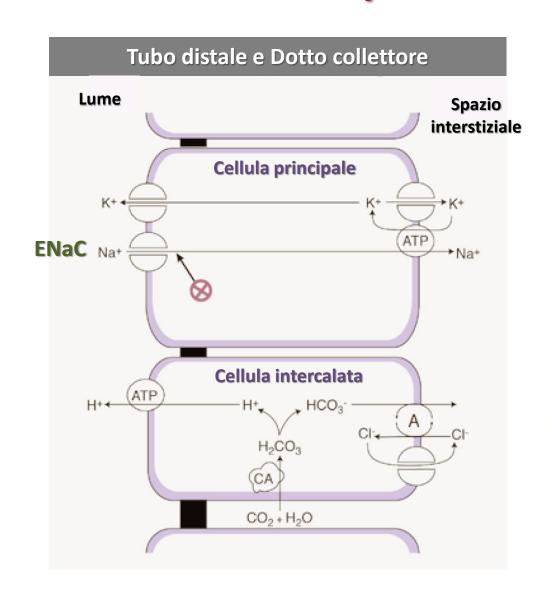
Relazioni struttura-attività

- Attività ottimale quando sono presenti sostituenti in posizione 2 o 3 e 4
- In 2 (o 3) è conveniente un gruppo amminico (es. C₄H₉NH-, 2-furil-CH2NH)
- Gruppi ingombranti in orto a -SO₂NH₂ aumentano l'attività rispetto al Cl

Derivati non solfonammidici

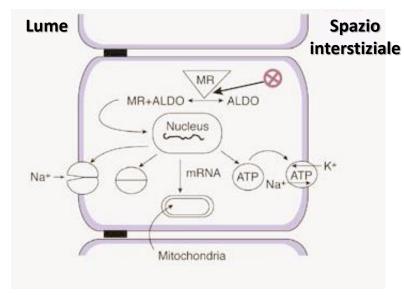
Acido Etacrinico: SARs

- Il gruppo –COOH aumenta l'escrezione renale del farmaco
- Il chetone α,β-insaturo è responsabile del blocco del trasportatore
- La presenza dei due Cl in orto e meta al gruppo C=O potenziano l'attività

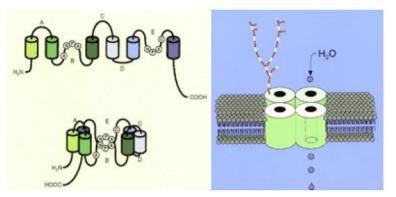

Usi terapeutici

- Ipertensione (in associazione), in caso di insuccesso di altri diuretici
- Edema polmonare
- Scompenso cardiaco cronico

Effetti collaterali


- Ipokaliemia (crampi, debolezza)
- Iperglicemia (inibizione del rilascio di insulina)
- Ipomagnesiemia (aumenta il rischio di aritmie)
- Ototossicità

Diuretici risparmiatori di potassio



ENaC: epithelial sodium channel

Controllo ormonale: Aldosterone

Controllo ormonale: Ormone antidiuretico (Vasopressina)

Acquaporine

Diuretici risparmiatori di potassio

Bloccanti degli ENaC

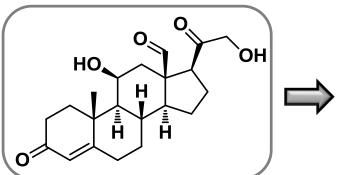
Triamterene

$$\begin{array}{c|c} & O & NH_2 \\ \hline CI & N & NH_2 \\ H_2N & N & NH_2 \end{array}$$

Amiloride

Meccanismo d'azione:

Il blocco dei canali del Na⁺ avviene nella porzione interna


Usi Terapeutici:

- Ipertensione
- In associazione con diuretici tiazidici

Effetti Collaterali:

Grave ipercaliemia

Antagonisti dell'Aldosterone

Aldosterone

- Aumento espressione ENaC e pompa Na⁺/K⁺:
 ritenzione di Na⁺ e acqua e perdita di Mg²⁺ e K⁺
- Effetti extraepiteliali: Infiammazione, formazione di collagene, fibrosi e necrosi

Spironolattone

Canrenone

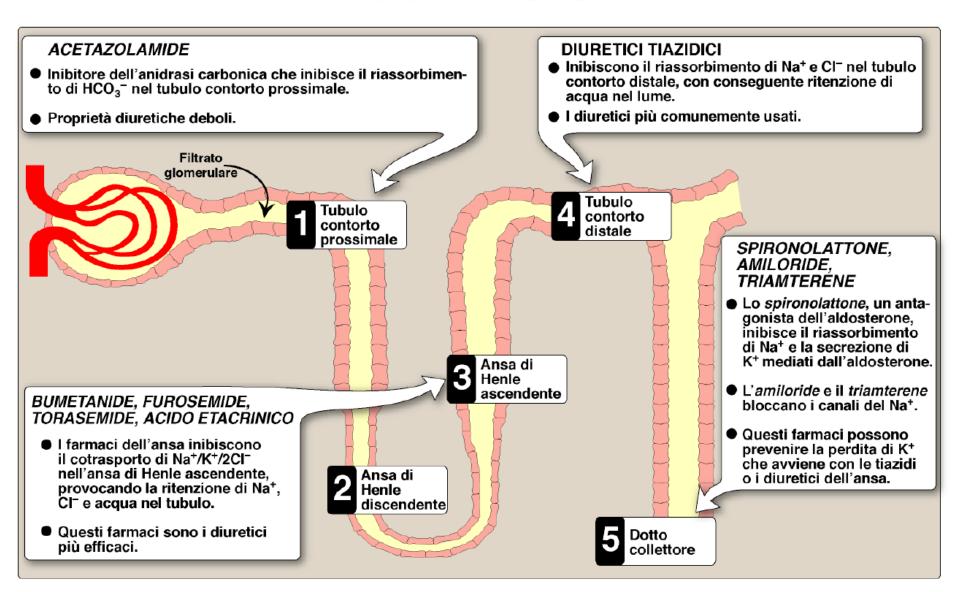
Canrenoato di potassio

- Ipertensione refrattaria (in associazione)
- Principale limitazione: effetti antiandrogenici

Antagonisti dell'Aldosterone

Eplerenone

- Altamente selettivo per il recettore dei mineralcorticoidi
- La presenza del gruppo 7α –COOCH₃ rallenta la metabolizzazione (riduzione del doppio legame in 4,5 sull'anello A): emivita 6-8h
- Usi Terapeutici: disfunzione ventricolare sinistra a seguito di infarto miocardico acuto
- Ridotti effetti collaterali


Diuretici: Proprietà Farmacologiche

Diuretici	Meccanismo	Sito d'azione	Potenza	Usi principali	Effetti collaterali
Osmotici	Ritenzione H ₂ O	Tratti permeabili del nefrone	Moderata	Ipertensione intra- oculare/endocranica	VomitoEdema polmonare
Inbitori CA	↓ Riassorbimento HCO ₃ ⁻	Tubulo prossimale	Lieve	GlaucomaAlcalosi metabolica	Acidosi metabolicaIpokaliemia
Tiazidi	Blocco simporto Na ⁺ /Cl ⁻	Tubulo distale	Moderata	• Ipertensione • Edema	IponatriemiaIpoglicemiaAlcalosi metabolica
Diuretici dell'ansa	Blocco simporto Na ⁺ /K ⁺ /2Cl ⁻	Ramo ascendente ansa di Henle	Alta	• Insuff. cardiaca • Ipertensione	Ipovolemia Marcata perdita di Na ⁺ , K ⁺ , Cl ⁻ , Mg ²⁺ , Ca ²⁺
Risparmiatori K ⁺	 ↓ Espressione ENaC e Na⁺/K⁺ ATPasi Blocco ENaC 	Tubulo distale Dotto collettore	Media	Ipokaliemia dovuta all'uso di altri diur.	Iperkaliemia severa

Effetti sull'escrezione dei principali cationi

Diuretici	Sodio	Cloro	Potassio	Calcio	Magnesio	Bicarbonato
Inibitori CA	↑	=	↑	↑	V	$\uparrow \uparrow$
Tiazidi	$\uparrow \uparrow$	$\uparrow \uparrow$	↑	\	↑	↑
Risparmiatori di K ⁺	↑	↑	1	=	V	↑
Diuretici dell'ansa	$\uparrow \uparrow$	=				

Farmaci Diuretici Siti d'Azione

