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Summary

✤ Different structural components are charcterized by different SB 
profiles

✤ Use SB profile measurements to decompose galaxy structure

✤ Morphology is galaxy structure after all: use structure decomposition 
to infer morphology

✤ Why is morphology (still) so relevant? correlations with many 
physical properties

✤ Modern efforts towards an objective/automated morphological 
classification
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Surface brightness profiles

✤ Isophotes

✤ Isophote ellipse fitting

✤ Azimuthally averaged profiles

✤ Profile fitting...

“anonymous” SDSS galaxy

IRAF-STSAS-ellipse
Jedrzejewski (1987), Busko (1996)
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Various analytical profiles

✤ Exponential

✤ de Vaucoluleurs (or r1/4)

✤ generalized Sersic

from Graham (2005)

Re effective radius, i.e. radius 
containing half of the total light

μ(Re) ≠ <μ>e≡μe

Classical

Classical

Disks

Ellipticals
Bulges
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“Hybrid” profiles

✤ B+D profiles: exp+deV or exp+Sersic

✤ Truncated

Gavazzi, SZ et al. (2001)
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Profile parameters and the size(s) 
of galaxies

✤ Galaxies have no boundaries: need to define 
a “size”.  
Different options

✤ Isophotal diameter (eg. 25 mag/arcsec2 in B)
✤ Some scale-length from the analytical fit
✤ Growth curve: radius enclosing a given 

fraction of the “total” luminosity
✤ Kron (1980)
✤ Petrosian radius (SDSS standard!) from Pierini et al. (1997)
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✤ Kron (1980)

✤ First moment of light distribution

✤ R1 is a function of R. However for R “large enough”, R1 converges 
quickly and R1 well defined independent of the exact choice of R.

✤ The Kron radius is defined as N times R1. Standard in source 
extraction softwares, like SExtractor (default RKron=2.5R1). 

✤ Used to define standard aperture to integrate flux.

Kron radius and flux
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Petrosian quantities

✤ Not straightforward definition by Petrosian (1976)
✤ Petrosian ratio Rp:
✤ Petrosian radius rp: where Rp(rp) equals a given number 

(0.2 for SDSS)
✤ Petrosian aperture= Np*rp (Np=2 for SDSS)
✤ Petrosian flux
✤ R50,petro≠rp
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Petrosian quantities: why?
✤ Robust
✤ Independent of surface brightness dimming, as 

the petrosian ratio is a ratio of two surface 
brightnesses

✤ Cosmological surface brightness dimming (see 
supplemental material “notes_Weinberg_cosmology.pdf”)

✤ The apparent angular size d𝛾 of a galaxy of 
proper dimension dl  scales with the angular 
diameter distance DA:

✤ The bolometric flux scales with the luminosity 
distance squared DL2 as:

✤ Hence the bolometric surface brightness  
observed now (z=0) scales as:
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“Total” luminosities

✤ Rely on extrapolation to infinity

✤ growth curve

✤ analytical profile extrapolation

✤ For any definition of aperture, the amount of integrated flux with 
respect to the “total” depends on the shape of the profile, hence on the 
morphology. 
✤ This introduces a morphological bias when estimating galaxy 

luminosities from aperture photometry
✤ On the other hand, extrapolation is risky!
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Structural components of (spiral) galaxies

Sketch from E. Tolstoy



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture II

Structural components: I. the (exponential) disk

de Vaucouleurs (1959)

Freeman (1970)
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The Freeman Law
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No. 1, 2010 REVISITING THE SCALE LENGTH– µ0 PLANE AND THE FREEMAN LAW L123
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Figure 5. Volume-corrected distribution of disk central surface brightness µ0 vs. morphological type T, asymmetry, concentration parameters, and stellar velocity
dispersion. The red dots illustrate the 282 galaxies for which robust morphological types were given in the LEDA catalog (type error smaller than 0.5), and the open
circles show the average µ0 for each type.
(A color version of this figure is available in the online journal.)

Fathi et al. (2010)
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Why are disks exponential?

✤ NOT obvious
✤ Key: Angular Momentum Distribution (AMD)

✤ specific AMD of exp disk similar to solid sphere (Mestel 1963), but 
if you put material with such an AMD in a DM halo, central 
concentration goes up and truncation arises (Dalcanton+1997)

✤ viscosity is often invoked as the key mechanism to redistribute AM 
(and mass), but enhances central concentration over initial 
conditions (LambdaCDM), so it’s impossible to have bulgeless 
disks

✤ possible solution: SN-driven outflows and density dependent star 
formation, i.e. “dirty physics”

ref. Dutton  (2009)
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Are disks really exponential?
✤ Truncations and anti-truncations are often observed

✤ Dynamical interplay and overlapping of different 
components

34 ERWIN, POHLEN, & BECKMAN Vol. 135
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Figure 5. Overview of our scheme for classifying surface-brightness profiles. The basic level recognizes types I, II, and III, based on their overall shape (ignoring the
central excess associated with the bar/bulge). Type II profiles can be further subdivided into II.i and II.o, based on where the break in the profile is located. Finally,
type II.o and type III profiles can be further classified based on the probable nature of the break (type II.o-OLR versus type II.o-CT) or the disk versus spheroid nature
of the outer profile (type III-d versus type III-s). See the text and subsequent figures for more details.

4.3.2. Type III-s versus Type III-d

We also define an interpretive subdivision for type III profiles.
This is based on whether the evidence indicates that the outer
part of the profile, beyond the break, is still part of the disk
(type III-d) or whether it is due to a more spheroidal component
(type III-s). The distinction between these two subdivisions is
explained in somewhat more detail, with illustrative examples,
in Erwin et al. (2005).

The clearest signature of a spheroidal component (type III-s)
is when the isophotes for an inclined galaxy become progres-
sively rounder at larger radii, and the transition between inner

and outer slopes is smooth, not abrupt (Figure 9). This is what
one would expect if the light at large radii is coming from a
rounder structure, in which the inclined disk is embedded.

Cases where the outer light is part of the disk (type III-d)
can be identified in two ways. When the galaxy is inclined,
the outer light appears to have the same ellipticity as the inner
light, suggesting it is still coming from the disk (Figure 10).
In other cases (e.g., face-on galaxies, where both disks and
spheroids will produce roughly circular isophotes), we can
sometimes see clear spiral arms in the outer region, which
again are signs that the outer light is still coming from a disk
(Figure 11).

(2008, AJ)
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Figure 6. Three basic classes of surface-brightness profiles. Type I (left) is the simple, single-exponential profile; note that we focus on the profile outside the bar
region (the vertical dotted lines mark lower- and upper-limit estimates of the bar size, from Table 1). Type II profiles (center) have a break at which the profile changes
slope from shallow to steep. Type III profiles (“antitruncations,” right) have the reverse behavior: The profile slope changes from steep to shallow at the break.
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Figure 7. Examples of our type II profile subdivisions. On the left is a type II.i profile, in which the break occurs near the end of the bar (so that the deficit is fully
inside the bar radius). On the right is a type II.o profile, with the break occurring well outside the bar.

One could argue that the type III-s classification doesn’t really
represent the disk profile, so that we might just as easily refer
to these as, e.g., “type I + spheroid” and reserve “type III”
strictly for the disky cases (what we currently call type III-d).
For consistency, however, and because in some cases we cannot
be certain the outer light is from a spheroid, we keep the type
III-s term.

4.4. Profiles with Multiple Classifications

The type I/II/III classification scheme, with the associated
subtypes, does a good job of capturing the main variations we
see in the disk profiles. Nevertheless, nature is nothing if not
perverse, and there are at least four galaxies whose profiles
are more complicated, combining elements of more than one
type. (Pohlen & Trujillo 2006 also found examples of composite
profiles in their late-type sample.) These are all cases where the
inner part of the profile (that is, outside the central photometric
“bulge” and any excess or “shoulder” associated with the bar)
has a type II character, but at larger radii the profile appears to
be type III; see Figure 12 for two examples. We do not see any
profiles with two downward-bending breaks, nor do we see any
cases of type III profiles with truncations.11

In some galaxies (e.g., NGC 3412, Figure 9), the complex
profile appears to be a simple case of a type II disk plus light

11 Pohlen & Trujillo (2006) did, however, find one case of an apparent
double-downward-break profile; see their Figure 5.

from a spheroid which dominates at large radii to produce the
type III-s profile. There are other galaxies where the outer excess
light is still part of the disk. For example, the outer excess light
in the profile of NGC 3982 (r > 53′′) comes from a region
dominated by two blue spiral arms (Figure 11). In all cases, we
indicate such composite profiles with a plus sign, e.g., “type
II.o-OLR + III-d,” where the first type is the innermost.

There are also some profiles where we have hints of excess
light at large radii (e.g., NGC 3507), but the S/N at those radii is
too low for us to be absolutely certain. To deal with these cases,
we use a criterion based on the magnitude difference between
the point where the apparent outer excess begins (µR = 25.5
in the case of NGC 3507) and the limiting magnitude from the
sky-background uncertainty (µcrit = 26.6 for NGC 3507). If this
difference is > 1.5 mag, we consider the type III classification
secure and list it in Table 4; if it is between 0.5 and 1.5 mag, we
include a tentative note on the plot (“[+ III?]” in the case of NGC
3507) and in the “Notes” column of Table 4; if the difference is
smaller than 0.5 mag (e.g., NGC 3368 or NGC 4267), then we
do not consider it a significant detection.

4.5. Exponential Fits and Measuring the Break Radius

We fit exponentials to portions of the surface-brightness
profile which appear approximately linear on the plots. In almost
all cases, we look for a reasonably linear zone outside the
bar region; in many galaxies, the bar is marked by an excess
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Figure 14. (Continued)

associated with spiral arms outside the bar (r ∼ 30–60′′). Note
that in principle it might be possible to interpret this excess as
a type II.o-OLR profile outside the bar, with the exponential at
r > 50′′ making the whole profile type II.o-OLR + III like that
of NGC 3982.

NGC 2787 (I). See Erwin & Sparke (2003) and Erwin
et al. (2003). Scattered light problems prevent tracing the
disk to fainter light levels, and make it difficult to be

certain about the possible excess light at r ! 130′′.
(Similar problems are present in images taken with the
Jacobus Kapteyn Telescope in 2001 January 29, obtained
from the ING Archive, which we used for the photometric
calibration.)

NGC 2859 (II.o-OLR). See Erwin & Sparke (2003). This
is one of three galaxies with “extreme outer-ring” profiles; the
profile between the end of the bar and the outer ring is in this
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Canonical disk properties

✤ Rotationally supported dynamics

✤ Flatness, typically h~0.1 rexp for the thin disk component

✤ Variety of stellar populations, most remarkably young and new-born 
stars are found here

✤ ISM (gas, neutral and ionized, and dust), 10 to 70-80% of baryonic 
mass

✤ Star forming regions
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Structural components:  
II. the central spheroid or bulge

✤ Renzini (1999), canonical interpretation of Hubble-Sandage-de Vaucouleurs 
classifications: “It appears legitimate to look at bulges as ellipticals that happen to have 
a prominent disk around them [and] ellipticals as bulges that for some reason have 
missed the opportunity to acquire or maintain a prominent disk.”

✤ However, as observations improve, we discover more and more features that make it 
difficult to interpret every example of what we used to call a bulge as an elliptical living 
in the middle of a disk. This leads authors to agonize: “Are bulges of early-type and 
late-type spirals different? Are their formation scenarios different? Can we talk about 
bulges in the same way for different types of galaxies?” (Fathi & Peletier 2003).

Kormendy & Kennicutt (2004)

?
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Classical Bulges/Ellipticals

✤ Smooth stellar distribution, ~homogeneous old ages

✤ Little dust and neutral ISM

✤ Velocity dispersion ~dominates the dynamics (but ordered motions 
can be very important as well!)

✤ de Vaucouleurs or high-n Sersic profile
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Pseudo Bulges

✤ Pseudobulges: dense central components in disk galaxies that look like 
classical, merger-built bulges but that were made slowly out of disk gas.

✤ Observations show that pseudo- bulges retain a memory of their disky 
origin. That is, they have one or more characteristics of disks: 

(a) flatter shapes than those of classical bulges
(b)correspondingly large ratios of ordered to random velocities
(c)  small velocity dispersions σ with respect to the Faber-Jackson 

correlation between σ and bulge luminosity
(d)spiral structure or nuclear bars in the “bulge” part of the light profile
(e) nearly exponential brightness profiles
(f) starbursts. 

✤ All these structures occur preferentially in barred and oval galaxies, where 
secular evolution should be most rapid.

Kormendy & Kennicutt (2004)
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E/Classical 
bulges vs. 
PseudoBulges

76 John Kormendy

Figure 1.68 updates the observation that classical bulges and ellipticals
have the same correlations. Simulations of major galaxy mergers reproduce
these correlations (e. g., Robertson et al. 2006; Hopkins et al. 2008, 2009b).

Earlier versions that emphasize pseudobulges are shown in Figs. 1.42 and
1.43. Many pseudobulges satisfy the correlations for bulges and ellipticals,
but in general, they show substantially larger scatter.

Fig. 1.42. Structural parameter correlations for pseudobulges (blue), classical
bulges (brown), ellipticals (red), and spheroidal galaxies (green). Pseudobulge data
and most bulge points are from Fisher & Drory (2008). The ellipticals, five bulge
points and the green squares are from Kormendy et al. (2009: KFCB). Green
triangles show all spheroidals from Ferrarese et al. (2006) that are not in KFCB.
Crosses show all spheroidals from Gavazzi et al. (2005) that are not in KFCB or
in Ferrarese et al. (2006). Open squares are Local Group spheroidals (Mateo 1998;
McConnachie & Irwin 2006). The bottom panels show major-axis Sérsic index n
and effective surface brightness µe versus galaxy or bulge absolute magnitude. The
top panel shows µe versus effective radius re (the Kormendy 1977b relation, which
shows the fundamental plane almost edge-on). From Kormendy & Fisher (2008).

Kormendy & Fisher (2008)
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No. 2, 2010 BULGES OF NEARBY GALAXIES WITH SPITZER 951

Figure 3. Examples of morphologies of classical bulges (top two panels) and pseudobulges (bottom four panels). All images are taken by HST in the F606W filter. On
each panel, we draw a line representing 500 pc.

including: nuclear spirals that extend all the way to the center
of the galaxy (e.g., NGC 4030 and NGC 4736), small bars that
are not much larger than a few hundred parsec across (e.g.,
NGC 4736), nuclear rings (e.g., NGC3351), and somewhat
chaotic nuclear patchiness that is reminiscent of late-type disk
galaxies (e.g., NGC 2903). We do not show images of all of our
bulges, rather we direct interested readers to the Hubble Legacy
Archive.3

3 Hubble Legacy Survey can be found at http://hla.stsci.edu/.

In Figure 4, we show the images of the bulges with D-type
morphology from Figure 3 taken with NICMOS F160W. In all
of these near-IR images, the same features that motivated D-type
(hence pseudobulge) classification in the optical bands are still
present. Yet, the nuclear spiral in NGC 4736 is much weaker,
although the nuclear bar in this bulge is still visible. The features
found in the optical are not merely small perturbations caused
by dust inside a smooth light distribution, but likely features of
the stellar mass distribution.
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Fisher & Drory 2010
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Structural components: III. bars

✤ Main disk perturbation

✤ important role in redistributing gas, stars, angular momentum

✤ resonances (co-rotation, ILR, OLR)

NGC 5746

NGC 128

from the web, Josh Barnes
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Structural components: IV. spiral arms

✤ what are they? 

✤ Grand design vs flocculent 
mechanical waves vs stochastic 
SF propagation

✤ how do they look like at 
different lambda (see next 
lecture)

FUV (1500 Å) NUV (2500 Å) SDSS-u (3500 Å) SDSS-g (5000 Å)

SDSS-r (6000 Å) SDSS-i (7500 Å) SDSS-z (8500 Å) H (1.65μm)

3.6 μm 5.8 μm 8 μm

Hα
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Structural components: V. thick disk

✤ Vertical structure of the disk

✤ Heated old stars?

from Wainscoat, Freeman & Hyland 1989
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Structural components: VI. the stellar halo
✤ smooth outer spheroid of old low-

metallicity stars?

✤ streams, shells etc... the halo is the 
interface of a galaxy with the cosmic 
web and keeps records of accretions, 
mergers and interactions

Martinez-Delgado et al. (2010)

Zibetti et al. (2004), stacking of >1000 gals.

M31-M33 (Ferguson, 
McConnackie, Ibata and collabs.)
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Structural components: 
VII. “other”: nuclei, rings, and more oddities... 
✤ Signposts of secular evolution and environmental 

interactions
✤ warps (from Kuijken 2000)

Bosma's Laws (Bosma 1991, on overall statistics of warps)
1. At least half of all galaxies are warped  
Implication: Warps are long-lived or continuously generated

2. Galaxies with small dark halo core radii (as determined from a rotation curve 
decomposition) are less likely to be warped  
Implication: Link between warps and the dark halo potential

Briggs's Laws (Briggs 1990, on structure of individual warps)
3. Disks are generally flat inside radius R25. Out to radius R26.5 the line of nodes of a 

warp is straight  
Implication: Self-gravity of the disk is important (it keeps the different parts of 
the disk precessing synchronously and hence the line of nodes straight - cf. the 
winding problem of spiral waves)

4. The outer line of nodes advances in the direction of galactic rotation  
Implication: Warps are not quite in equilibrium at large radii. This points to a 
link to the environment, or to very long timescales

✤ lopsidedness, asymmetries, streamers etc are signs 
of possible interactions with larger potential, other 
galaxies or even merger events

M101

http://ned.ipac.caltech.edu/level5/Kuijken/Kuijken_references.html#7
http://ned.ipac.caltech.edu/level5/Kuijken/Kuijken_references.html#8
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Structural (de)composition of 
galaxies
✤ Phenomena and reality

✤ effects of observing conditions

✤ stellar populations

✤ dust

✤ Should one look at stellar MASS distribution instead?

✤ 1D azimuthally averaged profiles (see above): reduces to curve fitting

✤ 2D SB distributions: techniques and examples
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2D galaxy decomposition

✤ Avoid azimuthal averaging

✤ directly take PSF into account

✤ many more degrees of freedom!

✤ variable centers, ellipticity and PA for different components

✤ can reproduce non-axissymmetric shapes

✤ 1st generation: only elliptical symmetry

✤ GIM2D https://www.astrosci.ca/users/GIM2D/ essentially 2D bulge-disk decomposition optimized for marginally resolved 
galaxies (Simard 2002)

✤ GALFIT v<2

✤ BUlgeDiskDecompositionAnalysis http://www.sc.eso.org/~dgadotti/budda (de Souza, Gadotti & dos Anjos 2004) introduces 
special treatment for bars

✤ 2nd generation: 

✤ generalized ellipses

✤ general functions (e.g. GALFIT v>=3, Peng et al. 2010; Imfit, Erwin et al. 2015)

BUDDA

Note: at any given radius many 
pixels count individually!

https://www.astrosci.ca/users/GIM2D/
http://www.sc.eso.org/~dgadotti/budda
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GALFIT v.3 (Peng et al. 2010) 
http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html

✤ improves on previous 2D fitting algorithms by allowing for irregular, curved, logarithmic and power-law spirals, ring, 
and truncated shapes in otherwise traditional parametric functions like the Sersic, Moffat, King, Ferrer, etc., profiles.

✤ One can mix and match these new shape features freely, with or without constraints, and apply them to an arbitrary 
number of model components of numerous profile types, so as to produce realistic-looking galaxy model images.

✤ Yet, despite the potential for extreme complexity, the meaning of the key parameters like the Sersic index, effective radius, 
or luminosity remains intuitive and essentially unchanged. 

✤ The new features have an interesting potential for use to quantify the degree of asymmetry of galaxies, to quantify low 
surface brightness tidal features beneath and beyond luminous galaxies, to allow more realistic decompositions of galaxy 
subcomponents in the presence of strong rings and spiral arms, and to enable ways to gauge the uncertainties when 
decomposing galaxy subcomponents.

5 components fitted: bulge, spiral, disk, 
and 2 nuclear components composed of a 
nuclear bar and a nuclear disk.

http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
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Structural decomposition

✤ Large degeneracies, both in 1D and 2D
✤ often crucial to provide good initial guesses based on some raw but 

robust analysis
✤ As always, adding degrees of freedom helps ONLY IF:

✤ data quality is good: low noise and systematics
✤ you know what you are doing: one can fit anything, but not 

necessarily meaningful!
✤ Weighing scheme is crucial. The simple photon noise is rarely the best 

choice, unless the model is GOOD in a chisquared sense
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Physical decomposition of galaxies?

✤ Different content in different structure

✤ Different dynamics: the “family of orbits” view
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Physical properties vs Morphology 
i.e. why is morphology still so popular? or 
are physical parameters just “proxies”?
✤ B/T (concentration) vs morphology

✤ color vs morphology

✤ (s)SFR vs morphology

✤ kinematics vs morphology

✤ mass vs morphology

✤ environment vs morphology (see following lectures)
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Going to high redshift: the end of 
“classical morphology”?

✤ Galaxies that can be 
classifies within the classic 
Hubble-Sandage-
deVaucoulers scheme 
become more and more 
rare moving to high-z

✤ Fraction of irregular grows

✤ New types appear

246 Ronald J. Buta

Fig. 2.83. Several high-redshift morphological categories, from B13 and references
therein. The number in parentheses is the redshift.

Bergh et al. (1996,2000), and Cowie et al. (1995). Clump clusters and
chains are shown in Fig. 2.83.

2.7.18 The Sloan Digital Sky Survey

The SDSS (Gunn et al. 1998; York et al. 2000) is without a doubt one of
the most important assemblages of morphological information on galaxies
since the Palomar Sky Survey. The survey includes morphological, photo-
metric, and spectroscopic data for a million galaxies, and opened up the
new era of huge extragalactic digital databases of medium-high resolution
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B/T [concentration] vs morphology
814 M. Scodeggio et al.: Photometric and structural properties of galaxies. IX.

Fig. 1. The distribution of concentration index C31 values (left panel), and of bulge to total light ratio B/T values (right panel),
as a function of Hubble type. Filled circles represent galaxies with a pure de Vaucouleurs radial profile, empty squares galaxies
with a pure exponential disk profile, and empty circles galaxies with a composite profile. To make the density of data points
more readily visible, we offset the abscissa of each point in the graph by a small, random amount. The insets show the median
C31 and B/T value for each type (filled squares), and the upper and lower quartiles of their distributions. Types later than Sc
are grouped together to improve statistics.

best fit criterion). Among the 1302 profiles, 192 are fit-
ted with a pure de Vaucouleurs r1/4 law and 369 with
a pure exponential one. The remaining profiles require a
Bulge+Disk (B+D) decomposition, with 54 objects show-
ing signs of a truncated outer light distribution. We have
also tried to fit the global surface brightness profile with
a single Sérsic (1968) r1/n profile, but we could not repro-
duce at all the shape of the observed profile for a large
fraction of the B+D galaxies, and therefore abandoned
this experiment. A total magnitude HT was derived for
each galaxy by extrapolating the suitable profile to infin-
ity, and adding the extrapolated light contribution to the
one measured within the last fitted isophote. Empirical ef-
fective radius re (the radius within which is contained half
of the galaxy light) and effective surface brightness µe (the
mean surface brightness within the effective radius) were
measured on the observed profile, at the half light point,
on the basis of the total magnitude determination. Bulge
and disk parameters were derived from the fitted profiles,
together with the bulge to total (B/T ) light flux (the ra-
tio of the bulge flux to the total flux from the galaxy). We
also derived for each galaxy an isophotal radius rH(20.5)
determined in the elliptical azimuthally–integrated pro-
files as the radius at which the surface brightness reaches
20.5 H–mag arcsec−2, and a concentration index (C31),
defined as in de Vaucouleurs (1977) to be the model–
independent ratio between the radii that enclose 75% and
25% of the total light HT. The median uncertainty in the

Fig. 2. The relation between the concentration index C31 and
the bulge-to-total light ratio for the galaxies in our sample.
Same symbols as in the previous figures.

determination of the total magnitude is 0.15 mag, while
those on the determination of log re and µe are 0.05 and
0.16 mag, respectively.

Although we do not use Hubble types as a basis for
the classification of galaxies, we have tried to leave the

Scodeggio et al. (2002)
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Concentration vs MorphologyNo. 2, 2010 A CATALOG OF DETAILED VISUAL CLASSIFICATIONS FOR 14,034 GALAXIES 455

Figure 27. Histogram of various Hubble types as a function of central concentration R90/R50 as used by the SDSS collaboration. The sub-categories of galaxy types
have been grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars), Sb and
Sbc galaxies (light green bars), Sc and Scd galaxies (dark green bars), and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)

Figure 28. Histogram of various Hubble types as a function of g-band sersic index calculated by the NYU VACG (Blanton et al. 2005b). The sub-categories of galaxy
types have been grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars),
Sb and Sbc galaxies (light green bars), Sc and Scd galaxies (dark green bars), and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)

(S0, Sa), a significant number of intermediate-late type spi-
rals (Sb, Sbc) have central concentrations comparable with
those of low-concentration ellipticals.

The data in these figures are useful for determining how
well parameters like concentration can be used as a proxy for
Hubble stage. For example, Shen et al. (2003) use a R90/R50
concentration cut of 2.86 as defined by Nakamura et al. (2003)
to distinguish between early-type and late-type galaxies. This
selects a large range of E, E/S0, and S0 galaxies (85% of all
such galaxies) but is also significantly contaminated (22%) by
Sa, Sab, Sb, and Sbc galaxies. Restricting the sample to face-on
objects with b/a > 0.6 reduces the contamination to 15%.

Figure 28 shows the number of galaxies grouped by Hubble
type and binned in sersic index, as calculated by the NYU value
added catalog group (VACG; Blanton et al. 2005b, 2003a).
Sersic index, which is also used as a proxy for B/T, also shows
a similar trend to concentration such that there is no sersic
index cut which will select only elliptical or E/S0 galaxies
without significant contamination by early-type spiral galaxies
or without the loss of the tail of the elliptical distribution. A more
detailed study of the relationship between visual morphology
and quantitative morphology and the role of selection effects is
postponed to a later paper in this series.

9. CONCLUSION

We have presented a catalog of detailed visual classifications
for 14,034 galaxies in the SDSS DR4 in the redshift range
0.01 < z < 0.1 and with g < 16 mag. In addition to T-Types
we record the existence of bars, rings, lenses, tails, warps, dust
lanes, arm flocculence, and multiplicity. 1793 galaxies in our
sample are also contained in the RC3, and comparison of our
classifications to those in the RC3 shows good agreement in
T-Types, as does a comparison between our classifications and
those of Fukugita et al. (2007), for the 450 galaxies in common.
The fraction of systems classified as barred in our sample
(26%) is substantially lower than the fraction in RC3, which we
attribute to our more stringent definition for classifying a galaxy
as weakly barred. Our ring fraction is 26%, though it peaks at
42% for Sa galaxies. Our overall lens fraction is 5% though
it is higher for early-type galaxies. These numbers indicate a
possible dependence of ring, lens, and bar frequency with T-
Type which we will investigate further in Papers II and III in this
series. We will investigate the dependence of AGN fraction on T-
Types in Paper IV of this series. In addition, we find that although
concentration and sersic indices are related to morphology, they
are not equivalent. This is by design as Hubble noted that central
concentration and spiral arm pitch angle, as well as frequency
and distribution of star formation knots, are all correlated. Hence

Nair & Abraham (2010)
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Figure 27. Histogram of various Hubble types as a function of central concentration R90/R50 as used by the SDSS collaboration. The sub-categories of galaxy types
have been grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars), Sb and
Sbc galaxies (light green bars), Sc and Scd galaxies (dark green bars), and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)

Figure 28. Histogram of various Hubble types as a function of g-band sersic index calculated by the NYU VACG (Blanton et al. 2005b). The sub-categories of galaxy
types have been grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars),
Sb and Sbc galaxies (light green bars), Sc and Scd galaxies (dark green bars), and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)

(S0, Sa), a significant number of intermediate-late type spi-
rals (Sb, Sbc) have central concentrations comparable with
those of low-concentration ellipticals.

The data in these figures are useful for determining how
well parameters like concentration can be used as a proxy for
Hubble stage. For example, Shen et al. (2003) use a R90/R50
concentration cut of 2.86 as defined by Nakamura et al. (2003)
to distinguish between early-type and late-type galaxies. This
selects a large range of E, E/S0, and S0 galaxies (85% of all
such galaxies) but is also significantly contaminated (22%) by
Sa, Sab, Sb, and Sbc galaxies. Restricting the sample to face-on
objects with b/a > 0.6 reduces the contamination to 15%.

Figure 28 shows the number of galaxies grouped by Hubble
type and binned in sersic index, as calculated by the NYU value
added catalog group (VACG; Blanton et al. 2005b, 2003a).
Sersic index, which is also used as a proxy for B/T, also shows
a similar trend to concentration such that there is no sersic
index cut which will select only elliptical or E/S0 galaxies
without significant contamination by early-type spiral galaxies
or without the loss of the tail of the elliptical distribution. A more
detailed study of the relationship between visual morphology
and quantitative morphology and the role of selection effects is
postponed to a later paper in this series.

9. CONCLUSION

We have presented a catalog of detailed visual classifications
for 14,034 galaxies in the SDSS DR4 in the redshift range
0.01 < z < 0.1 and with g < 16 mag. In addition to T-Types
we record the existence of bars, rings, lenses, tails, warps, dust
lanes, arm flocculence, and multiplicity. 1793 galaxies in our
sample are also contained in the RC3, and comparison of our
classifications to those in the RC3 shows good agreement in
T-Types, as does a comparison between our classifications and
those of Fukugita et al. (2007), for the 450 galaxies in common.
The fraction of systems classified as barred in our sample
(26%) is substantially lower than the fraction in RC3, which we
attribute to our more stringent definition for classifying a galaxy
as weakly barred. Our ring fraction is 26%, though it peaks at
42% for Sa galaxies. Our overall lens fraction is 5% though
it is higher for early-type galaxies. These numbers indicate a
possible dependence of ring, lens, and bar frequency with T-
Type which we will investigate further in Papers II and III in this
series. We will investigate the dependence of AGN fraction on T-
Types in Paper IV of this series. In addition, we find that although
concentration and sersic indices are related to morphology, they
are not equivalent. This is by design as Hubble noted that central
concentration and spiral arm pitch angle, as well as frequency
and distribution of star formation knots, are all correlated. Hence
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Color vs Morphology

454 NAIR & ABRAHAM Vol. 186

Figure 25. Histogram of various Hubble types as a function of (a) Mass in log units and (b) Petrosian half-light radius Rp50 in kpc. The sub-categories of galaxy
types have been grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars),
Sb and Sbc galaxies (light green bars), Sc and Scd galaxies (dark green bars) and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)

Figure 26. Histogram of various Hubble types as a function of (a) g-band absolute magnitude and (b) g − r color. The sub-categories of galaxy types have been
grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars), Sb and Sbc galaxies
(light green bars), Sc and Scd galaxies (dark green bars), and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)

Nair & Abraham (2010)
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sSFR vs Morphology

Kennicutt (1998)
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Mass vs Morphology
454 NAIR & ABRAHAM Vol. 186

Figure 25. Histogram of various Hubble types as a function of (a) Mass in log units and (b) Petrosian half-light radius Rp50 in kpc. The sub-categories of galaxy
types have been grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars),
Sb and Sbc galaxies (light green bars), Sc and Scd galaxies (dark green bars) and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)

Figure 26. Histogram of various Hubble types as a function of (a) g-band absolute magnitude and (b) g − r color. The sub-categories of galaxy types have been
grouped into the following broad classes: E and E/S0 galaxies (black bars), S0 and S0/a galaxies (orange bars), Sa and Sab galaxies (yellow bars), Sb and Sbc galaxies
(light green bars), Sc and Scd galaxies (dark green bars), and galaxies with T-Types later than Sd (blue bars.) See the text for details.
(A color version of this figure is available in the online journal.)
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Color-Concentration-L(H) cube
(2002)
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Is bimodality the key?  
Or, what do we need morphology for?

✤ Morphology should be defined in 
relation to what one looks for: if you 
only care about a rough early-late 
type distinction, fine classification 
makes no sense

✤ Although “natura non facit saltus”, 
clear bimodalities in structure and 
physical properties of galaxies are 
clear and appear to be key to 
understand galaxy evolution

✤ Linking these bimodal distribution to 
physical parameters, environment, 
signs of evolutionary mechanisms 
(possibly highlighted by 
morphological signatures) is a 
powerful way to make progress Blanton et al. (2005)
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“Objective” and “quantitative” 
morphological classifications

✤ Entering the epoch of large survey: more statistics, less detail

✤ Parameter proxies and profile/image decomposition: B/T, 
concentration (R90/R50, c31), color, best fitting profile (exp vs deV)

✤ Concentration-Asymmetry-clumpinesS (Conselice 2003)

✤ M20, Gini, elongation + PCA (ZEST, Scarlata et al. 2007)

✤ Shapelet decomposition and PCA

✤ Artificial Neural Networks (eg Ball et al. 2004)



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture II

Structure-color bimodality as a 
proxy for morphology

No. 1, 2009 EXPLORING THE MGC COLOR–STRUCTURE BIMODALITY 109

Figure 2. Global color-Sérsic index distribution of bright (MB − 5 log h70 <
−18 mag), nearby (0.013 < z < 0.18), one-component galaxies in the MGC.
Disk-only systems are represented by filled, blue circles and elliptical systems by
filled, red circles with the subdivision at n = 1.5 used to define these structural
types indicated by the vertical, long-dashed, black line. The corresponding
subdivision in color at (u − r)g = 2.1 mag is indicated by the horizontal,
long-dashed, black line. The volume-density distribution of the one-component
population is revealed by the solid, black contours marked at log φ = −5.25,
−5 and −4.75 h3

70 Mpc−3 per bin with the parameter space shown divided
into a 48×48 square grid. The median reddening correction for internal dust
extinction applied to the disk-only systems is indicated with a black arrow. The
mean uncertainties in the measurements of global colors and Sérsic indices for
galaxies in our sample are indicated by the magenta error bar at the bottom of
this plot. Normalized histograms of the distributions of elliptical and disk-only
galaxies in each variable are contained in the side panels.
(A color version of this figure is available in the online journal.)

fication. Hence, we conclude that, although component bulge
Sérsic indices and B/T flux ratios (and hence colors) for some
fraction of our galaxies may be systematically biased, the pres-
ence of unmodeled bars and bright knots of active star formation
in the MGC B-band images will not affect our investigation of
the role of galaxy structural type in shaping the global color–
concentration bimodality.

3. RESULTS

3.1. The Global Color–Concentration Distributions of One-
and Two-Component Galaxies

The global color–concentration distribution of bright (MB −
5 log h70 < −18 mag), nearby (0.013 < z < 0.18), one-
component galaxies in the MGC is presented in Figure 2. This
structural class displays strong bimodality, separating naturally
in this parameter space into two distinct subpopulations—a
“red, highly concentrated” peak and a “blue, diffuse” peak—
composed of elliptical and disk-only systems, respectively.
These peaks are evidently the foundations of those observed in
the global color–concentration distribution of the full MGC pop-
ulation (Figure 15 in Driver et al. 2006), although their separa-
tion is more clearly defined in the absence of the two-component
systems. We quantify this improvement in the apparent bimodal-
ity of the distribution by comparing the reduced-χ2 values re-

Table 1
Centroids and Standard Deviations of the One-Component Galaxy

Color–Concentration Distribution Peaks

Structural ⟨n⟩ σlog n ⟨(u − r)g⟩ σ(u−r)g
Type (mag) (mag)

Elliptical 3.4 ± 0.2 0.15 ± 0.01 2.62 ± 0.09 0.27 ± 0.01
Disk-only 0.71 ± 0.02 0.16 ± 0.01 1.44 ± 0.04 0.28 ± 0.04

Note. Values quoted are relative to the absolute magnitude limit of the sample
(MB −5 log h70 < −18 mag), recalling that mean red and blue sequence colors
(Baldry et al. 2004), and elliptical galaxy Sérsic indices (Graham & Guzmán
2003), are luminosity dependent.

sulting from least-squares fitting of pairs of bivariate Gaussian
functions to the observed global color–concentration distribu-
tions of one- and two-component galaxies (χ2/ν = 14.2) and
one-component galaxies only (χ2/ν = 2.1).8 The centroids and
widths of each peak, as derived by this bivariate Gaussian fitting
approach, are compiled in Table 1 for reference.

Inspection of Figure 2 confirms that the subdivision of the
one-component population into elliptical and disk-only systems
at n = 1.5 adopted by Allen et al. (2006) is indeed consistent
with a local minimum in this parameter. An equivalent local
minimum in color exists at roughly (u−r)g = 2.1 mag. Relative
to these subdivisions (indicated in Figure 2), luminous, “bulge-
less, red disks” and “disk-less, blue bulges” (i.e., blue spheroids)
are rare; specifically, we recover total volume-densities of only
(1.7±0.3) and (1.1±0.1)×10−4 h3

70 Mpc−3, respectively in the
MGC. Implications of the paucity of these systems for galaxy-
formation scenarios are discussed in Section 4.

The global color–concentration distribution of bright (MB −
5 log h70 < −18 mag), nearby (0.013 < z < 0.18), two-
component galaxies is presented in Figure 3. These bulge-plus-
disk systems constitute an intermediate color–concentration
class, spanning the two peaks of the one-component galaxy
bimodality. As mentioned earlier, Drory & Fisher (2007) iden-
tified a relationship between visually classified bulge type (i.e.,
“pseudobulge” or “classical” bulge)9 and position in the color–
concentration plane. Their sample of 39 S0–Sbc galaxies is
overlaid against the MGC distribution in Figure 3 for compari-
son, and a close agreement is evident. (Note that we adjust the
colors quoted in Drory & Fisher’s (2007) Table 1 for the effects
of internal dust reddening, and for an offset of ∼ 0.2 mag be-
tween their integrated Sérsic profile colors and the SDSS model
colors used here.) Drory & Fisher (2007) reveal that Sabc, pseu-
dobulge galaxies may be isolated from S0/Sabc, classical bulge
(and S0 pseudobulge) galaxies in this parameter space using
cuts at n = 1.5 and (u− r)g = 2.2 mag (∼ 2.1 mag after the rel-
evant corrections). Motivated by these results we subdivide our
two-component population into two structural types, “bridging”
and “red peak,” defined via a cut at (u− r)g = 3.22−2.75 log n
(indicated in Figure 3). Visual inspection of the B-band MGC
images confirms these structural types correspond to morpho-

8 Of course, neither of these reduced-χ2 values represents a technically good
fit as expected given that both peaks are slightly assymetric in shape,
indicating intrinsic deviations from simple bivariate Gaussian distributions. We
also note that a two-dimensional K–S test comparing the one- and
two-component galaxy color–concentration distributions returned a probability
of ≪1% that these samples were drawn from the same population.
9 Although visual bulge morphology has been shown to correlate with V−H
color (Carollo et al. 2002) and mid-infrared bulge color (Fisher 2006) we
would caution that dynamical data (indicating the degree to which these
structures are rotationally supported or otherwise) would allow for more
confident classification of bulge type.
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Figure 3. Global color-Sérsic index distribution of bright (MB − 5 log h70 <
−18 mag), nearby (0.013 < z < 0.18), two-component galaxies in the MGC.
These bulge-plus-disk systems are represented by filled, orange circles. For
reference, the volume-density distribution of the one-component population
is revealed by the solid, black contours marked at log φ = −5.25, −5 and
−4.75 h3

70 Mpc−3 per bin with the parameter space shown divided into a
48×48 square grid. The median reddening correction for internal dust extinction
applied to these bulge-plus-disk systems is indicated with a black arrow. Drory
& Fisher’s (2007) sample of 39 S0–Sc galaxies (with colors adjusted for dust
reddening and a magnitude system offset, as described in Section 3.1) is overlaid
for comparison. Their (visually classified) pseudobulge galaxies are marked as
green squares and their classical bulge galaxies as purple triangles with open
symbols denoting S0s and solid symbols Sa–Sc types. Our subdivision of the
two-component population into “bridging” and “red peak” structural types at
(u − r)g = 3.22 − 2.75 log(n) is indicated by the long-dashed, black line. For
comparion, Drory & Fisher’s (2007) subdivisions at n = 2.5 and (u− r)g = 2.2
mag (adjusted to 2.1 mag) are indicated by the short-dashed, black lines. The
mean uncertainties in the measurements of global colors and Sérsic indices for
galaxies in our sample are indicated by the magenta error bar at the bottom of
this plot. Normalized histograms of the two-component galaxy distribution in
each variable are contained in the side panels.
(A color version of this figure is available in the online journal.)

logically late-type and early-type disk, respectively, as reported
by Drory & Fisher (2007).

Examining the two-component, red peak systems we note
that their global colors are significantly bluer than those of
the one-component, red peak (i.e., elliptical) systems, which
appears to indicate a younger mean stellar population age for
these galaxies (modulo the effects of metallicity). However,
this offset is almost entirely introduced by our correction for
dust reddening, which (as noted earlier) may not be appropriate
for these early-type disks. Hence, we caution against placing
excessive emphasis on this color offset in the interpretation of
our results. We also note that the two-component, red peak
systems display highly concentrated light distributions similar
to those of the ellipticals. Although this appears to argue for
the role of violent-relaxation processes during their formation,
the known prevalence of (secular evolution-built) pseudobulges
amongst early-type disk galaxies (Erwin et al. 2003; Laurikainen
et al. 2005; Drory & Fisher 2007) challenges this interpretation.

The two-component, bridging population systems are gener-
ally similar in color to their one-component, disk-only coun-
terparts, albeit slightly redder, whilst their global Sérsic indices

Figure 4. B-band luminosity functions of key structural types identified in
the MGC. Namely, one-component (light green) and two-component (orange)
systems, and their corresponding subtypes: elliptical (red) and disk-only (blue);
bridging (dark green) and red peak (purple) (see Section 3.1 for definition).
In each case, the measured number density of galaxies in each 0.5 mag bin
is indicated by a solid square with Poisson error bars, and the corresponding
best-fit Schechter luminosity function by a solid line. The open squares with
error bars and dotted lines illustrate the effect of removing the internal dust
extinction correction applied to the two-component, red peak systems. The
Schechter function parameters of each fit are contained in Table 2.
(A color version of this figure is available in the online journal.)

are significantly higher. These results are broadly consistent
with the interpretation of these galaxies as pseudobulge systems
given that N-body simulations demonstrate the effectiveness of
secular evolution in building up comparable central mass con-
centrations over 1–2 Gyr timescales (e.g., Athanassoula 2005;
Debattista et al. 2006). We will return to the interpretation of our
results in light of galaxy-formation theory in Section 4, but first
we recover luminosity functions and total stellar mass densities
for each structural type (Section 3.2), and explore the connec-
tion between bulge and disk colors in two-component systems
(Section 3.3).

3.2. Luminosity Functions and Stellar Mass Densities of Key
Structural Types

The luminosity functions of the key MGC structural types
identified in Section 3.1, namely, one-component (elliptical and
disk-only) and two-component (bridging and red peak) are pre-
sented in Figure 4. Each of these was modeled using a Schechter
luminosity function with the best-fit Schechter parameters and
integrated luminosity densities contained in Table 2.

Inspection of the luminosity functions by structural type in
Figure 4 reveals that two-component galaxies dominate (in
number density) over one-component galaxies at the bright-
est luminosities (MB − 5 log h70 < −20 mag), whereas
one-component galaxies dominate at intermediate luminosities
(−20 < MB − 5 log h70 < −18 mag). Furthermore, over the
luminosity range explored, disk-only systems are more com-
mon than ellipticals, and red peak systems are more common

pure “bulge”

pure “disk”
Strateva+01

Cameron+09, Millennium Galaxy Catalog
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The CAS proxy (Conselice 2003)

paper, as defined in CBJ00, is sensitive to any feature that
produces asymmetric light distributions. This includes star
formation, galaxy interactions/mergers, and projection
effects such as dust lanes. Since most galaxies are not edge-
on systems, star formation and galaxy interactions/mergers
are likely the dominate physical effects (CBJ00). While no
nonmergers have very high asymmetries, the corollary is not
true, and galaxies that have undergone a merger can have
modest asymmetry values (see x 5.2.1). Asymmetry also
tends to correlate with the (B!V ) color of galaxies, an
indication that it is sensitive to some degree to the ages of a
galaxy’s stellar populations.

It would be ideal to have an asymmetry index sensitive
only to large-scale stellar distributions. To measure this we
compute the asymmetries of each galaxy image in our sam-
ple after it is convolved with a smoothing filter of size
1=6" rð! ¼ 0:2Þ, to reduce the image’s effective resolution.
The asymmetry of this smoothed galaxy is then computed in
the normal manner (CBJ00). We call this value the global

asymmetry, AGðRÞ. This is equivalent to studying the asym-
metric components of a galaxy’s low-frequency structure.2

Figure 4 shows the relationship between the global asym-
metry, AGðRÞ, and the total asymmetry, AðRÞ, for the Frei

I R abs(I−R)

abs(I−R)_______
I

I B I−B

S = I−B___
I

C = 5 log(        )
20

r
80r_____

r
80

r
20

A = 

Fig. 3.—Graphical representation of how the three parameters used in this paper, asymmetry (A), clumpiness (S), and concentration (C ) are measured. For
the measurements of A and S, I is the original galaxy image, R is this image rotated by 180&, while B is the image after it has been smoothed (blurred) by the
factor 0:3" rð! ¼ 0:2Þ. The details of these measurements are not shown here but can be found in Conselice et al. (2000b) for asymmetry, A, Bershady et al.
(2000) for concentration,C, and this paper for the clumpiness index, S.

2 Ideally, a measurement of the global asymmetry would be computed
by considering all light from a galaxy equally. That is, all pixels in a galaxy
are given a binary value of 1 or 0 depending on whether or not light is being
emitted from the galaxy at each respective pixel. This is decided by deter-
mining if pixel values are greater than, or less than, some level of the sky
variation ". Everything less than n" is set to zero while everything greater
thann" is set to 1 and is presumably a pixel that samples part of the galaxy.
Although this method was tried using several " values and various radii, the
best turned out to be a 3 " division. The resulting image then contains only
pixels with values 0 or 1. The global asymmetry index was then computed
using the same techniques presented in CBJ00. However, after extensive
testing it was found that this procedure was not robust and gave global
asymmetry measurements that correlated strongly with the type of galaxy,
with elliptical galaxies usually having the highest values owing to the
systematics caused by their extensive surface brightness envelopes.
Therefore, this methodology was rejected for further use.
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value of the third parameter is denoted by the color of the
point. The first panel shows the concentration and asymme-
try indices where the color of the points give the value of the
clumpiness, S, of each galaxy. Systems that have S < 0:1 are
colored red, those with 0:1 < S < 0:35 green, and systems
with S > 0:35 are blue. Likewise for the A-S diagram: red is
for systems with C > 4, green for 3 < C < 4, and blue for
C < 3. In the S-C diagram red symbols are for galaxies
with A < 0:1, green symbols are for galaxies with
0:1 < A < 0:35, and blue symbols for those withA > 0:35.

The average values of the concentration, asymmetry and
clumpiness parameters, and their 1 ! variations, are listed in
Table 6 for each of the broad galaxy types we study. From

Fig. 15.—Three realizations of the different galaxy data sets plotted together by their CAS parameters. The first panel shows the concentration and
asymmetry indexes plotted with colored points that reflect the value of the clumpiness for each galaxy. Systems that have clumpiness values, S < 0:1 are
colored red, those with 0:1 < S < 0:35 are green, and systems with S > 0:35 are blue. Likewise for the A-S diagram: red for C > 4, green for 3 < C < 4, and
blue for C < 3; and for the S-C diagram: red is for systems with A < 0:1, green 0:1 < A < 0:35, and blue A > 0:35. This figure demonstrates that when using
these three morphological parameters all known galaxy types can be distinctly separated and thus distinguished in structural space.

TABLE 6

Averages and 1 !Variations of Structural Parameters
for Galaxy Types

Type C(R) A(R) S(R)

Ellipticals ............................. 4.4! 0.3 0.02! 0.02 0.00! 0.04
Early-type disks (Sa–Sb) ...... 3.9! 0.5 0.07! 0.04 0.08! 0.08
Late-type disks (Sc–Sd) ........ 3.1! 0.4 0.15! 0.06 0.29! 0.13
Irregulars ............................. 2.9! 0.3 0.17! 0.10 0.40! 0.20
Edge-on disks....................... 3.7! 0.6 0.17! 0.11 0.45! 0.20
ULIRGs .............................. 3.5! 0.7 0.32! 0.19 0.50! 0.40
Starbursts ............................ 2.7! 0.2 0.53! 0.22 0.74! 0.25
Dwarf ellipticals................... 2.5! 0.3 0.02! 0.03 0.00! 0.06

No. 1, 2003 GALAXY STELLAR LIGHT DISTRIBUTIONS 17
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✤ Gini: how much of the light goes into the brightest pixels
✤ Lorentz curve:

✤ sort pixels by intensity: &

✤
&

✤ For a uniform population &  is the diagonal
✤ The less uniform the distribution, the more the curve deviates from the diagonal

✤ Gini coefficient measures this deviation

fi+1 ≥ fi

L(p ≡ n /Ntot) =
∑n

i=1 fi
∑Ntot

i=1 fi
L(p)

Gini coefficient

Survey (SDSS) database. (We refer the reader to York et al.
2000 for an overview of the SDSS.) A comparison of SDSS
concentration measures to visual morphological classifica-
tions is given in Shimasaku et al. (2001), who find them well
correlated with Hubble type. Furthermore, in what might
(in some respects) be considered a modern reappraisal of the
fundamental basis of the Yerkes system, Kauffmann et al.
(2002) have shown that central concentration is strongly
correlated with luminosity-weighted stellar age and star
formation history for 80,000 galaxies in the SDSS.

In both the low- and high-redshift contexts we have just
described, measurements of central concentration have been
based on simple aperture photometry. Such concentration
index measurements therefore rely on two key assumptions.
First, the measurements depend on an assumed symmetry
in the galaxies. (In the case of concentration measures based
on elliptical apertures it is assumed that galaxy isophotes
can be well described by ellipses, while in studies that use
circular apertures it is assumed that inclination effects are
small.) The second assumption that underlies aperture-
based concentration index measurements is that galaxy
images have a well-defined center. Inspection of the images
of high-redshift galaxies (many of which are strongly asym-
metric and distorted) shows that neither of these assump-
tions is likely to be fulfilled when studying galaxies in the
distant universe. This has lead us to seek out an alternative,
more general formulation of galaxy concentration that does
not involve any kind of aperture photometry.

In x 2 we present our proposed alternative definition of
galaxy concentration, based on measurement of the Gini
coefficient (Gini 1912), a familiar tool of econometrics that
does not appear to have been used in an astronomical con-
text before now.We describe how the Gini coefficient can be
viewed as a generalized measure of concentration that is
applicable to galaxies of arbitrary shape and that does not
even require that a galaxy image have a single well-defined
nucleus. We show that the Gini coefficient can be used to
describe the morphology of all galaxy types, from perfectly
symmetric nearby objects to the most distant, most wildly
distorted images of strongly gravitational-lensed back-
ground galaxies.

In x 3 we measure the Gini coefficient for a magnitude-
limited sample of 930 g! < 16 mag galaxies taken from the
SDSS3 and explore the relationship between the Gini coeffi-
cient and central concentration. We will show that these
parameters are strongly correlated but that they do not
measure precisely the same thing. In cases in which it is
meaningful to measure boththe Gini coefficient and central
concentration (e.g., in nearby undistorted systems with
well-defined centers), the difference between these two quan-
tities is strongly correlated with mean surface brightness.
Even more surprising is the fact that all galaxies in the
nearby universe (irrespective of age, mass, star formation
history, dynamical state, or morphology) fall on a two-
dimensional surface within the three-dimensional parame-
ter space defined by the Gini coefficient, mean surface
brightness, and central concentration. The implications of
this are considered in x 4, where we also describe our plans

for future papers in this series. Our main conclusions are
summarized in x 5.

2. THE GINI COEFFICIENT

The Lorenz curve (Lorenz 1905) is commonly used in
economics to describe the inequality in a population’s distri-
bution of wealth. In this context the curve is constructed by
plotting the cumulative proportion of income as a function
of population rank. In a population where all individuals
have exactly the same income (where, for example, 20% of
the population has 20% of a country’s total wealth), the
Lorenz curve is a straight diagonal line with a slope of unity,
called the line of equality. If there is any inequality in
income, then the Lorenz curve falls below the line of
equality. For example, in the extreme case where a tiny
proportion of the population has nearly all the income, the
Lorenz curve is flat and near zero for most of its length until
rising precipitously near its end (see Fig. 1).

The total amount of inequality is conveniently parameter-
ized using a summary statistic of the Lorenz curve, the Gini
coefficient G. The geometric meaning of G is illustrated in
Figure 1. The Gini coefficient is simply the ratio between
area A (the area enclosed between the line of equality and
the Lorenz curve) and the total triangular area under the
line of equality (A þ B). The Gini coefficient ranges from a
minimum value of zero, when all individuals are equal, to a
maximum of one in a population where all the wealth is
concentrated in a single individual.4

A more formal statistical description of the Lorenz curve
and Gini coefficient complements the intuitive description

3 We follow the convention of using asterisks following filter names to
indicate that magnitudes are given in the preliminary SDSSAB system. The
reader is referred to Fukugita et al. (1996), Hogg et al. (2001), and Smith et
al. (2002) for a discussion of the SDSS filter system and its calibration.
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Fig. 1.—Geometric interpretation of the Gini coefficient based on the
Lorenz curve. The x-axis corresponds to the quantile of the distribution,
and the y-axis corresponds to the cumulative proportion. The Lorenz curve
for a perfectly equal distribution corresponds to the diagonal line of
equality. In the figure, a schematic Lorenz curve divides the area beneath
the line of equality into two areas, A and B. The greater the deviation of a
measured Lorenz curve from the line of equality, the greater the inequality.
The Gini coefficient corresponds to the ratio of area A to the total area
under the diagonal A þ B.

4 In other words, G ¼ 0 for a perfect communist society and G ¼ 1 for
an absolute monarchy where all riches belong to the king!
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Survey (SDSS) database. (We refer the reader to York et al.
2000 for an overview of the SDSS.) A comparison of SDSS
concentration measures to visual morphological classifica-
tions is given in Shimasaku et al. (2001), who find them well
correlated with Hubble type. Furthermore, in what might
(in some respects) be considered a modern reappraisal of the
fundamental basis of the Yerkes system, Kauffmann et al.
(2002) have shown that central concentration is strongly
correlated with luminosity-weighted stellar age and star
formation history for 80,000 galaxies in the SDSS.

In both the low- and high-redshift contexts we have just
described, measurements of central concentration have been
based on simple aperture photometry. Such concentration
index measurements therefore rely on two key assumptions.
First, the measurements depend on an assumed symmetry
in the galaxies. (In the case of concentration measures based
on elliptical apertures it is assumed that galaxy isophotes
can be well described by ellipses, while in studies that use
circular apertures it is assumed that inclination effects are
small.) The second assumption that underlies aperture-
based concentration index measurements is that galaxy
images have a well-defined center. Inspection of the images
of high-redshift galaxies (many of which are strongly asym-
metric and distorted) shows that neither of these assump-
tions is likely to be fulfilled when studying galaxies in the
distant universe. This has lead us to seek out an alternative,
more general formulation of galaxy concentration that does
not involve any kind of aperture photometry.

In x 2 we present our proposed alternative definition of
galaxy concentration, based on measurement of the Gini
coefficient (Gini 1912), a familiar tool of econometrics that
does not appear to have been used in an astronomical con-
text before now.We describe how the Gini coefficient can be
viewed as a generalized measure of concentration that is
applicable to galaxies of arbitrary shape and that does not
even require that a galaxy image have a single well-defined
nucleus. We show that the Gini coefficient can be used to
describe the morphology of all galaxy types, from perfectly
symmetric nearby objects to the most distant, most wildly
distorted images of strongly gravitational-lensed back-
ground galaxies.

In x 3 we measure the Gini coefficient for a magnitude-
limited sample of 930 g! < 16 mag galaxies taken from the
SDSS3 and explore the relationship between the Gini coeffi-
cient and central concentration. We will show that these
parameters are strongly correlated but that they do not
measure precisely the same thing. In cases in which it is
meaningful to measure boththe Gini coefficient and central
concentration (e.g., in nearby undistorted systems with
well-defined centers), the difference between these two quan-
tities is strongly correlated with mean surface brightness.
Even more surprising is the fact that all galaxies in the
nearby universe (irrespective of age, mass, star formation
history, dynamical state, or morphology) fall on a two-
dimensional surface within the three-dimensional parame-
ter space defined by the Gini coefficient, mean surface
brightness, and central concentration. The implications of
this are considered in x 4, where we also describe our plans

for future papers in this series. Our main conclusions are
summarized in x 5.

2. THE GINI COEFFICIENT

The Lorenz curve (Lorenz 1905) is commonly used in
economics to describe the inequality in a population’s distri-
bution of wealth. In this context the curve is constructed by
plotting the cumulative proportion of income as a function
of population rank. In a population where all individuals
have exactly the same income (where, for example, 20% of
the population has 20% of a country’s total wealth), the
Lorenz curve is a straight diagonal line with a slope of unity,
called the line of equality. If there is any inequality in
income, then the Lorenz curve falls below the line of
equality. For example, in the extreme case where a tiny
proportion of the population has nearly all the income, the
Lorenz curve is flat and near zero for most of its length until
rising precipitously near its end (see Fig. 1).

The total amount of inequality is conveniently parameter-
ized using a summary statistic of the Lorenz curve, the Gini
coefficient G. The geometric meaning of G is illustrated in
Figure 1. The Gini coefficient is simply the ratio between
area A (the area enclosed between the line of equality and
the Lorenz curve) and the total triangular area under the
line of equality (A þ B). The Gini coefficient ranges from a
minimum value of zero, when all individuals are equal, to a
maximum of one in a population where all the wealth is
concentrated in a single individual.4

A more formal statistical description of the Lorenz curve
and Gini coefficient complements the intuitive description

3 We follow the convention of using asterisks following filter names to
indicate that magnitudes are given in the preliminary SDSSAB system. The
reader is referred to Fukugita et al. (1996), Hogg et al. (2001), and Smith et
al. (2002) for a discussion of the SDSS filter system and its calibration.
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Fig. 1.—Geometric interpretation of the Gini coefficient based on the
Lorenz curve. The x-axis corresponds to the quantile of the distribution,
and the y-axis corresponds to the cumulative proportion. The Lorenz curve
for a perfectly equal distribution corresponds to the diagonal line of
equality. In the figure, a schematic Lorenz curve divides the area beneath
the line of equality into two areas, A and B. The greater the deviation of a
measured Lorenz curve from the line of equality, the greater the inequality.
The Gini coefficient corresponds to the ratio of area A to the total area
under the diagonal A þ B.

4 In other words, G ¼ 0 for a perfect communist society and G ¼ 1 for
an absolute monarchy where all riches belong to the king!
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Multiparameter+PCA approach 
the ZEST example (Zurich Estimator of Structural Types, 

Scarlata et al. 2007)
✤ Set of 4 non-parametric indices of light distribution plus 

ellipticity
✤ Concentration C
✤ Asymmetry A
✤ Gini G
✤ M20 (how much the second moment of the 20% brightest pixels 

deviates from the overall second moment)
✤ ellipticity 

✤ Combine with Principal Component Analysis to remove 
correlation among parameters

4. M20 (=log
P

Mi/Mtot, with
P

fi < 20% and Mtot the total
second-ordermoment), i.e., the second-ordermoment of the bright-
est 20% of the galaxy flux. For centrally concentrated objects,
M20 correlates with the concentration C; however, M20 is also
sensitive to bright off-centered knots of light;

5. The ellipticity ! ¼ 1" b/a of the light distribution, as
measured by SExtractor (ver. 2.4.3; Bertin & Arnouts 1996).
SExtractor computes the semimajor axis a and semiminor axis b
from the second-order moments of the galaxy light; specifically,
a and b are the maximum andminimum spatial variance (rms) of
the object, along the direction " where the variance is maxi-
mized:

a2 ¼ x̄2 þ ȳ2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x̄2 " ȳ2)2

4
þ x̄y2

s

; ð3Þ

b2 ¼ x̄2 þ ȳ2

2
"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x̄2 " ȳ2)2

4
þ x̄y2

s

; ð4Þ

where the second-order moments x̄2, ȳ2, and x̄y are given by

x̄2 ¼
P

i Ii x
2
iP

Ii
" x̄2; ð5Þ

ȳ2 ¼
P

i Ii y
2
iP

Ii
" ȳ2; ð6Þ

x̄y ¼
P

i Ii xi yiP
Ii

" x̄ ȳ: ð7Þ

The values of a and b are thus representative of the galaxy el-
lipticity at large radii and are rather insensitive to details in the

internal structure (e.g., bars in disk galaxies, knots of star forma-
tion, etc.).

2.2. Principal Component Analysis

The quantities above provide complementary, but also redun-
dant, information on galaxy structure. We therefore performed a
PCA using the measurements of A,C,M20, G, and ellipticity ! as
basic variables.
The PCA is a classical statistical method for multivariate anal-

ysis, which reduces the dimensionality of a data set without a
significant loss of information. This is done by transforming the
observed variables into a new set of orthogonal variables, the

Fig. 1.—Relations between the nonparametric diagnostics (M20, G, A, C, and ! ¼ 1" b/a). Contours enclose & 30% (white contour), 80% (gray contour), and 98%
(black contour) of the galaxies. The main correlations among some of the parameters, such as M20, C, and G, are clearly visible in these diagrams.

TABLE 1

Results of the ZEST PC Analysis

Variable

(1)

PC1

(2)

PC2

(3)

PC3

(4)

PC4

(5)

PC5

(6)

Eigenvalue.............................. 2.46 1.19 0.92 0.25 0.17

Proportion............................... 0.49 0.24 0.18 0.05 0.03

Cumulative ............................. 0.49 0.73 0.92 0.97 1.00

Concentration (=x1)................ "0.54 0.35 0.18 "0.34 "0.66

M20 (=x2) ................................ 0.60 "0.04 0.03 0.39 "0.70

Gini (=x3) ............................... "0.56 "0.20 0.14 0.79 "0.02

Ellipticity (=x4) ...................... 0.20 0.57 0.74 0.16 0.26

Asymmetry (=x5) ................... 0.02 "0.71 0.64 "0.29 "0.08

Notes.—Columns (2)Y(6) refer to the five PCs in ZEST. The first row gives
the eigenvalue (i.e., variance) of the data along the direction of the corresponding
PC. The second and third rows show the fraction of variance and the cumulative
fraction of each PC, respectively. The last five rows list the weights assigned to
each input variable, in the linear combination that gives the direction of the PC
(i.e., PCi ¼ #x1 þ $x2 þ %x3 þ &x4 þ 'x5, with the coefficients # , . . . ,' given
by the numbers listed, per each PC, in the last five rows).

SCARLATA ET AL.408 Vol. 172

principal components ‘‘PCi’’, (with i ¼ 1; : : : ; n, and n the
number of basic parameters, i.e., variables). The PCi are ordered
so that the first few of them retain most of the variance present
in the original data set. The PCs are a linear combination of the
original variables and define a new coordinate system obtained
by rigid rotation of the original space. In the new system, the axes
represent the directions of maximum variability in the original
n-dimensional distribution of points.

In detail, the data set is described by an n ;m datamatrix (n ¼ 5
in the current version of ZEST), and m is the number of galax-
ies with measured basic parameters. All variables are standard-
ized before performing the analysis by subtracting their median
value (indicated with the subscript M in the following expres-
sions) and normalizing them with their standard deviation.
Therefore, the five variables considered in the ZEST PCA are
defined as x1 ¼ (C " CM )/!C , x2 ¼ (M20 "M20;M )/!M20

, x3 ¼
(G" GM )/!G, x4 ¼ ("" "M )/!", and x5 ¼ (A" AM )/!A.

The directions of the PCs are derived by calculating the eigen-
vectors of the n ; n covariance matrix of the xj variables [Sij ¼
h(xi " hxii)(xj " hxji)i]. The matrix S # 0 is real and symmet-
ric. Thus, it admits real, positive eigenvalues ki. By sorting the
eigenvectors in order of decreasing values of the eigenvalues, an
ordered orthogonal basis is obtained, with eigenvectors aligned
along directions of decreasing variance (ki/

P
j kj) in the data.

The first few PCs that account for most of the power, i.e., most of
the total variance,

P
j kj, in the data set, are then used to replace the

original n variables without any significant loss of information.

2.3. ZEST Calibration with 56,000 IAB $ 24
COSMOS Galaxies

We calibrate the ZEST classification grid on a sample of
%56,000, IAB $ 24, COSMOS galaxies detected in the 260 ACS
F814W images acquired during the HST Cycle 12 observing
period (Scoville et al. 2007a). The total area covered by this
fraction of COSMOS is 0.74 deg2. Details on the COSMOS
sample are given in Appendix A.1.

For each COSMOS galaxy, we measured the basic nonpara-
metric quantities described in x 2.1 by computing them on the gal-
axy pixels (defined using Petrosian apertures, see Appendix A.2).
Figure 1 shows the behavior of each basic nonparametric diag-
nostic as a function of the others. The contours in each panel
enclose 30%, 80%, and 98% of the COSMOS galaxies in our
sample. Global correlations are known to exist between various
nonparametric coefficients. For example, relatively tight corre-
lations exist between G, M20, and C, with objects with high C
tending to have lowM20 and high G. Any value of C is observed
for small values of A, while high values of A are preferentially
observed in low-C galaxies. These trends have already been
noted in the literature and indeed highlight the redundancy of in-
formation present in these diagnostics. As expected, the ellipticity
" does not correlate with any of the other parameters, except for a
mild positive correlation with the concentration for " > 0:6. This
is a geometric effect, since edge-on galaxies preferentially have
high C-values.

The results of the PCA on the normalized COSMOS data set
are presented in Table 1. In particular, columns (2)Y(6) refer to
the five PCs derived in the analysis. The first row gives the eigen-
value (i.e., variance) of the data along the direction of the corre-
sponding PC. The second row shows the fraction of the variance
that is explained by each of the PCs, i.e., the fraction of the
‘‘power’’ that is contained in each PC; the third row lists the cu-
mulative fraction of the variance. In the last five rows of the table,
each column lists the weights assigned to each input variable

Fig. 2.—Fraction of the total variance explained by each PC as a function of
the corresponding PCs for all galaxies down to I ¼ 24 in the ACS catalog ( filled
circles). Squares refer to the same analysis performed only on those objects with
magnitude brighter than I ¼ 22:5. The horizontal line indicates 20% of the total
variance, i.e., the value for the five eigenvalues for a sample of 100%uncorrelated
variables.

TABLE 2

The ZEST Classification Scheme

Parameter

Type 1

Early Types

(No Visible Disk)

Type 2

Disk Galaxies

Type 3

Irregular Galaxies

Bulgeness ..................................... . . . From 0 (massive bulge) to 3 (bulgeless disk) . . .
Elongation .................................... From 0 (face on) to 3 (edge on) From 0 (face on) to 3 (edge on) . . .
Irregularity.................................... From 0 (regular) to 2 (highly irregular) . . . . . .
Clumpiness................................... From 0 (smooth) to 3 (very clumpy) From 0 (smooth) to 3 (very clumpy) . . .
Size............................................... RP RP RP

Notes.—Summary of the ZEST classification scheme. Type 1 (early-type galaxies) are spheroids with no visible disk (including face-on S0 galaxies, for which
the identification of the disk component is difficult). Type 2 are disk galaxies, and type 3 are irregular galaxies. A clumpiness parameter is assigned to each ZESTunit
cube classified as type 1 or 2, Early-type and disk galaxies are assigned an elongation parameter in four steps from 0 (face on) to 3 (edge on), and an irregularity pa-
rameter from 0 for regular to 2 for highly irregular galaxies. Type 2 disk galaxies are split in four bins of bulgeness parameter, namely, 2.0, 2.1, 2.2, and 2.3 from
bulge-dominated to bulgeless disks. Relatively inclined S0 galaxies occupy cubes classified as T ¼ 2:0. The last row indicates that a measure of galaxy size (the
Petrosian radius, Petrosian 1976) is available for all ZEST-classified galaxies, as a by-product of our analysis.

CLASSIFICATION OF COSMOS GALAXIES WITH ZEST 409No. 1, 2007
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Shapelet (non-parametric) 
decomposition
✤ Base of “shapes” to decompose galaxies as linear combination, just 

like a vectorial space

✤ Large dimensionality, need to compress data --> e.g. PCA

✤ Usual problem with PCA: what’s the physical meaning of the PCs??

✤ http://www.astro.caltech.edu/~rjm/shapelets/

✤ Wavelet decomposition: Refregier (2003), Massey & Refregier (2005), 
Bosch (2010) elliptical shapelets 

✤ Kelly & McKay (2004): application to SDSS morphology

http://www.astro.caltech.edu/~rjm/shapelets/
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http://www.astro.caltech.edu/~rjm/shapelets/anims.php

http://www.astro.caltech.edu/~rjm/shapelets/anims.php
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Artificial Neural Networks

✤ e.g. Ball et al. (2004), https://sites.google.com/site/nickballastronomer/research/ann_morph
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The concentration index is R50/R90 where R50 and R90 are the radii
within which 50 and 90 per cent of the Petrosian flux is received.

The surface brightness used here is given by

µ = mr + 5 log
(

πr 2
P

)

, (6)

mr being the magnitude and rP being the Petrosian radius in the r

band.
Parameters other than magnitudes and colours are measured

in the r band, since this band is used to define the aperture
through which Petrosian flux is measured for all five bands. Fur-
ther details of all the parameters are given on the DR1 webpage
(http://www.sdss.org/dr1/).

2.3 Target types

The networks were separately trained on the following three targets.

2.3.1 Eyeball morphological type

1875 SDSS galaxies have been classified into morphological types
by Nakamura et al (2003). The system used was a modified version
of the T-type system (de Vaucouleurs 1959), with the types being
assigned in steps of 0.5 from 0 (early type) to 6 (late type). Unas-
signed types (−1) and galaxies flagged as being likely to have bad
photometry were removed.

The Nakamura et al. catalogue is based on a pre-DR1 version of
SDSS data and so their catalogue was matched to DR1 by equatorial
coordinates with a tolerance of 0.36 arcsec, so that the number of
duplicate matches is negligible. This gave 1399 matches.

2.3.2 eClass

The eClass is a continuous one parameter type assigned from the
projection of the first three principal components (PCs) of the en-
semble of SDSS galaxy spectra. The locus of points forms an ap-
proximately one dimensional curve in the volume of PC1, PC2 and
PC3. This is a generalization of the mixing angle φ in PC1 and PC2

φ = tan−1

(

a2

a1

)

, (7)

where a1 and a2 are the eigencoefficients of PC1 and PC2.
The range is from approximately −1 (corresponding to late type

galaxies) to 0.5 (early type).
The eClass is also robust to missing data in the spectra used for

its derivation, and is almost independent of redshift. Further details
can be found in Connolly et al. (1995), Connolly & Szalay (1999),
and Yip et al. (in preparation).

2.3.3 Redshift

The redshift is calculated automatically by the SDSS spectroscopic
software pipelines (Stoughton et al. 2002), Frieman et al. (in prepa-
ration), and has a success rate of almost 100 per cent.

3 A RT I F I C I A L N E U R A L N E T WO R K S

ANNs, as collections of interconnected neurons each able to carry
out simple processing were originally conceived as being models of
the brain. This is still true, however the networks used here are vastly
smaller and simpler and are best described in terms of non-linear
extensions of conventional statistical methods.

The supervised ANN takes parameters as input and maps them
on to one or more outputs. A set of vectors of parameters, each

vector representing a galaxy and corresponding to a desired output,
or target, is presented. The network is trained and is then able to
assign an output to an unseen parameter vector.

This is achieved by using a training algorithm to minimize a cost
function which represents the difference between the actual and
desired output. The cost function c is commonly of the form

c =
1
N

N
∑

k=1

(ok − tk)2, (8)

where ok and tk are the output and target respectively for the kth of
N objects.

In general the neurons could be connected in any topology, but a
commonly used form is to have an a : b1 : b2 : . . . : bn :c arrangement,
where a is the number of input parameters, b1...n are the number of
neurons in each of n one dimensional ‘hidden’ layers and c is the
number of neurons in the final layer, equal to the number of outputs.
Here we have one output, c = 1. Multiple outputs can give Bayesian
a posteriori probabilities that the output is of that class given the
values of the input parameters. (This is classification, whereas a
single output, c = 1, is strictly regression.) Each neuron is connected
to every neuron in adjacent layers but not to any others.

Following Lahav et al. (1996), each neuron j in layer s receives
the N outputs x

(s−1)
i from the previous layer s − 1 and gives a linear

weighted sum over the outputs,

I
(s)
j =

N
∑

i=0

w
(s)
i j x

(s−1)
i . (9)

There is usually an additive constant, w0j, where x0 = 1, in this
linear sum. This ‘bias’ allows the outputs to be shifted in analogy
with a DC level.

The neuron then performs a non-linear operation (the trans-
fer function) on the result to give its output x

(s)
j , typically a sig-

moid or, as used here, the tanh function, which has an output
range of −1 to 1:

x
(s)
j =

2

1 + exp
(

−2I
(s)
j

) − 1. (10)

The parameters are normalized to zero mean and unit variance.
This is not strictly necessary as the net can in principle perform
an arbitrary non-linear mapping, but it enables the weights to be
initialized in the range −1 to 1 and not be made unduly large or small
relative to each other by the training. This is particularly helpful for
larger networks.

The weights are prevented from growing too large by using weight
decay, a regularisation method which adds a term d to the cost
function which penalizes large weights:

d = const ×
1
2

∑

j

w2
j . (11)

Regularisation is also helped by the normalization.
The weights are adjusted by the training algorithm. In galaxy

classification this has typically been the well-known backpropaga-
tion algorithm (Werbos 1974; Parker 1985; Rumelhart, Hinton &
Williams 1986) or the quasi-Newton algorithm (e.g. Bishop 1995).
The Matlab software allows the specification of which one to use
from a number of choices including these. Here another algorithm
popular in neural net research is used: the Levenberg-Marquardt
method (Levenberg 1944; Marquardt 1963, also detailed in Bishop
1995). This has the advantage that it is very quick to converge to a
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The concentration index is R50/R90 where R50 and R90 are the radii
within which 50 and 90 per cent of the Petrosian flux is received.

The surface brightness used here is given by
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, (6)

mr being the magnitude and rP being the Petrosian radius in the r
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Parameters other than magnitudes and colours are measured

in the r band, since this band is used to define the aperture
through which Petrosian flux is measured for all five bands. Fur-
ther details of all the parameters are given on the DR1 webpage
(http://www.sdss.org/dr1/).

2.3 Target types
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of the T-type system (de Vaucouleurs 1959), with the types being
assigned in steps of 0.5 from 0 (early type) to 6 (late type). Unas-
signed types (−1) and galaxies flagged as being likely to have bad
photometry were removed.

The Nakamura et al. catalogue is based on a pre-DR1 version of
SDSS data and so their catalogue was matched to DR1 by equatorial
coordinates with a tolerance of 0.36 arcsec, so that the number of
duplicate matches is negligible. This gave 1399 matches.
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The eClass is a continuous one parameter type assigned from the
projection of the first three principal components (PCs) of the en-
semble of SDSS galaxy spectra. The locus of points forms an ap-
proximately one dimensional curve in the volume of PC1, PC2 and
PC3. This is a generalization of the mixing angle φ in PC1 and PC2
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, (7)

where a1 and a2 are the eigencoefficients of PC1 and PC2.
The range is from approximately −1 (corresponding to late type

galaxies) to 0.5 (early type).
The eClass is also robust to missing data in the spectra used for

its derivation, and is almost independent of redshift. Further details
can be found in Connolly et al. (1995), Connolly & Szalay (1999),
and Yip et al. (in preparation).

2.3.3 Redshift

The redshift is calculated automatically by the SDSS spectroscopic
software pipelines (Stoughton et al. 2002), Frieman et al. (in prepa-
ration), and has a success rate of almost 100 per cent.
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ANNs, as collections of interconnected neurons each able to carry
out simple processing were originally conceived as being models of
the brain. This is still true, however the networks used here are vastly
smaller and simpler and are best described in terms of non-linear
extensions of conventional statistical methods.

The supervised ANN takes parameters as input and maps them
on to one or more outputs. A set of vectors of parameters, each

vector representing a galaxy and corresponding to a desired output,
or target, is presented. The network is trained and is then able to
assign an output to an unseen parameter vector.

This is achieved by using a training algorithm to minimize a cost
function which represents the difference between the actual and
desired output. The cost function c is commonly of the form

c =
1
N

N
∑

k=1

(ok − tk)2, (8)

where ok and tk are the output and target respectively for the kth of
N objects.

In general the neurons could be connected in any topology, but a
commonly used form is to have an a : b1 : b2 : . . . : bn :c arrangement,
where a is the number of input parameters, b1...n are the number of
neurons in each of n one dimensional ‘hidden’ layers and c is the
number of neurons in the final layer, equal to the number of outputs.
Here we have one output, c = 1. Multiple outputs can give Bayesian
a posteriori probabilities that the output is of that class given the
values of the input parameters. (This is classification, whereas a
single output, c = 1, is strictly regression.) Each neuron is connected
to every neuron in adjacent layers but not to any others.

Following Lahav et al. (1996), each neuron j in layer s receives
the N outputs x

(s−1)
i from the previous layer s − 1 and gives a linear

weighted sum over the outputs,

I
(s)
j =
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∑
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i . (9)

There is usually an additive constant, w0j, where x0 = 1, in this
linear sum. This ‘bias’ allows the outputs to be shifted in analogy
with a DC level.

The neuron then performs a non-linear operation (the trans-
fer function) on the result to give its output x

(s)
j , typically a sig-

moid or, as used here, the tanh function, which has an output
range of −1 to 1:
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(s)
j =

2

1 + exp
(

−2I
(s)
j

) − 1. (10)

The parameters are normalized to zero mean and unit variance.
This is not strictly necessary as the net can in principle perform
an arbitrary non-linear mapping, but it enables the weights to be
initialized in the range −1 to 1 and not be made unduly large or small
relative to each other by the training. This is particularly helpful for
larger networks.

The weights are prevented from growing too large by using weight
decay, a regularisation method which adds a term d to the cost
function which penalizes large weights:

d = const ×
1
2

∑

j

w2
j . (11)

Regularisation is also helped by the normalization.
The weights are adjusted by the training algorithm. In galaxy

classification this has typically been the well-known backpropaga-
tion algorithm (Werbos 1974; Parker 1985; Rumelhart, Hinton &
Williams 1986) or the quasi-Newton algorithm (e.g. Bishop 1995).
The Matlab software allows the specification of which one to use
from a number of choices including these. Here another algorithm
popular in neural net research is used: the Levenberg-Marquardt
method (Levenberg 1944; Marquardt 1963, also detailed in Bishop
1995). This has the advantage that it is very quick to converge to a
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The concentration index is R50/R90 where R50 and R90 are the radii
within which 50 and 90 per cent of the Petrosian flux is received.

The surface brightness used here is given by

µ = mr + 5 log
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πr 2
P

)

, (6)

mr being the magnitude and rP being the Petrosian radius in the r

band.
Parameters other than magnitudes and colours are measured

in the r band, since this band is used to define the aperture
through which Petrosian flux is measured for all five bands. Fur-
ther details of all the parameters are given on the DR1 webpage
(http://www.sdss.org/dr1/).

2.3 Target types

The networks were separately trained on the following three targets.

2.3.1 Eyeball morphological type

1875 SDSS galaxies have been classified into morphological types
by Nakamura et al (2003). The system used was a modified version
of the T-type system (de Vaucouleurs 1959), with the types being
assigned in steps of 0.5 from 0 (early type) to 6 (late type). Unas-
signed types (−1) and galaxies flagged as being likely to have bad
photometry were removed.

The Nakamura et al. catalogue is based on a pre-DR1 version of
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coordinates with a tolerance of 0.36 arcsec, so that the number of
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ration), and has a success rate of almost 100 per cent.
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a posteriori probabilities that the output is of that class given the
values of the input parameters. (This is classification, whereas a
single output, c = 1, is strictly regression.) Each neuron is connected
to every neuron in adjacent layers but not to any others.

Following Lahav et al. (1996), each neuron j in layer s receives
the N outputs x

(s−1)
i from the previous layer s − 1 and gives a linear

weighted sum over the outputs,

I
(s)
j =

N
∑

i=0

w
(s)
i j x

(s−1)
i . (9)

There is usually an additive constant, w0j, where x0 = 1, in this
linear sum. This ‘bias’ allows the outputs to be shifted in analogy
with a DC level.

The neuron then performs a non-linear operation (the trans-
fer function) on the result to give its output x

(s)
j , typically a sig-

moid or, as used here, the tanh function, which has an output
range of −1 to 1:

x
(s)
j =

2

1 + exp
(

−2I
(s)
j

) − 1. (10)

The parameters are normalized to zero mean and unit variance.
This is not strictly necessary as the net can in principle perform
an arbitrary non-linear mapping, but it enables the weights to be
initialized in the range −1 to 1 and not be made unduly large or small
relative to each other by the training. This is particularly helpful for
larger networks.

The weights are prevented from growing too large by using weight
decay, a regularisation method which adds a term d to the cost
function which penalizes large weights:

d = const ×
1
2

∑

j

w2
j . (11)

Regularisation is also helped by the normalization.
The weights are adjusted by the training algorithm. In galaxy

classification this has typically been the well-known backpropaga-
tion algorithm (Werbos 1974; Parker 1985; Rumelhart, Hinton &
Williams 1986) or the quasi-Newton algorithm (e.g. Bishop 1995).
The Matlab software allows the specification of which one to use
from a number of choices including these. Here another algorithm
popular in neural net research is used: the Levenberg-Marquardt
method (Levenberg 1944; Marquardt 1963, also detailed in Bishop
1995). This has the advantage that it is very quick to converge to a
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columns with the weighted fraction of vote of the galaxy
being an elliptical, spiral or point source/artifact - i.e. clas-
sified as don’t know by Galaxy Zoo users - between 0 and
1. Any star-forming irregular galaxies are also put into this
don’t know class by the Galaxy Zoo users. If the sum of the
fractional votes in each of these three classes is less than
1, the remaining fraction of vote is assigned to the merger
class. Note that this data set is affected by a luminosity,
size and redshift dependent classification bias as is the case
for most morphologies derived from flux-limited data sets.
Bamford et al. (2009) have derived corrections to remove
this classification bias from the data. However, in this paper
we work with the original catalogue of morphologies as the
classification biases are not particularly important for the
aims of this paper.

We match the Galaxy Zoo catalogue to the SDSS DR7
PhotoObjAll5 catalogue in order to obtain input parame-
ters for the neural network code. These input parameters
are described in detail in § 4. Before input into the neural
network, we apply cuts on our sample and remove objects
that are not detected in the g, r and i bands and those that
have spurious values and large errors for some of the other
parameters used in this study. Darg et al. (2009) have al-
ready discussed issues to do with merger classification within
Galaxy Zoo and constructed a sample of ∼3000 merging
pairs from the Galaxy Zoo data. In this paper, we classify
objects as ellipticals, spirals or point sources/artifacts us-
ing our machine learning code and note that the Darg et al.
(2009) data set may be used in future for the classification of
mergers although this has not been attempted in this paper.
We therefore also remove the few well classified mergers with
a fraction of vote of being a merger greater than 0.8 from
the sample as we are not attempting to classify the mergers
in this work. This leads to a sample of ∼800,000 objects.
Further cuts are then applied to define a gold sample where
the fraction of vote for each object belonging to any one
of three morphological classes - ellipticals, spirals and point
sources/artifacts, is always greater than 0.8. This gold sam-
ple contains ∼315,000 objects and is essentially equivalent
to the clean sample of Lintott et al. (2008). The neural net-
work is run on the gold sample as well as the entire sample.

It is also the case that faint disky objects are more
likely to be classified as ellipticals unless the spiral arms can
be clearly seen. The elliptical sample therefore also proba-
bly contains a reasonable number of lenticular systems and
we therefore refer to this morphological class as early types
throughout this paper. We therefore also consider a sample
of objects with r < 17 that is defined as our bright sam-
ple and should suffer from a lower level of contamination in
the early type class. This magnitude limit is the same as
that imposed on objects that were used to determine user
weights in Lintott et al. (2008). The bright sample contains
∼340,000 objects and has fewer ”well classified” early types
than the gold sample as discussed later.

5 Note that the SDSS object IDs correspond for objects in DR6
and DR7

Figure 1. Cartoon schematic of how both the human eye as well
as machine learning algorithms such as artificial neural networks
perform morphological classification and determine parameters
such as those listed in Table 1 and 2 from the galaxy images.

3 ARTIFICIAL NEURAL NETWORKS

We use an artificial neural network code (Ripley 1981,
1988; Bishop 1995; Lahav et al. 1995; Naim et al. 1995;
Collister & Lahav 2004) for classification in this paper. It
has already been shown that, on a de Vaucouleurs type sys-
tem, T , which spans values from -5 to 10, human expert clas-
sifiers agree to rms ∆T = 1.8, and that such agreement can
be obtained by a neural network when trained on the classifi-
cations of one of the experts (Lahav et al. 1995; Naim et al.
1995). The neural network used in our study is made up
of several layers, each consisting of a number of nodes. The
first layer receives the input parameters described in detail
in § 4 and the last layer outputs the probabilities for the ob-
ject belonging to the three morphological classes. All nodes
in the hidden layers in between are interconnected and con-
nections between nodes i and j have an associated weight,
wij . A training set is used to minimise the cost function, E
(Eq. 1) with respect to the free parameters wij :

E =
∑

k

(TNN (wij , pk)− Teye,k)
2 (1)

where TNN is the neural network probability of the object
belonging to a particular morphological type, pk are the in-
put parameters to the network and Teye,k are the fractional
weighted votes in the training set in this case assigned by
Galaxy Zoo users.

If the data is noisy or the network is very flexible, a
validation set may be used in addition to the training set
to prevent over-fitting. During the initial setup, one has to
specify the architecture of the neural network - the number
of hidden layers and nodes in each hidden layer. We choose a
neural network with two hidden layers with 2N nodes each,
where N is the number of input parameters. The architecture
of the network is therefore N:2N:2N:3. Note that increasing
the number of nodes further either by adding nodes to ex-
isting hidden layers or adding more hidden layers to the
network, does not result in any substantial improvement to

Banerji et al. (2010)

https://sites.google.com/site/nickballastronomer/research/ann_morph
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