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Abstract

Commutators originated over 100 years ago as a by-product of computing group
characters of nonabelian groups. They are now an established and immensely useful
tool in all of group theory. Commutators became objects of interest in their own
right soon after their introduction. In particular, the phenomenon that the set
of commutators does not necessarily form a subgroup has been well documented
with various kinds of examples. Many of the early results have been forgotten and
were rediscovered over the years. In this paper we give a historical overview of the
origins of commutators and a survey of different kinds of groups where the set of
commutators does not equal the commutator subgroup. We conclude with a status
report on what is now called the Ore Conjecture stating that every element in a
finite nonabelian simple group is a commutator.

1 Origins of commutators

“In a group the product of two commutators need not be a commu-
tator, consequently the commutator group of a given group cannot be
defined as the set of all commutators, but only as the group generated
by these. There seems to exist very little in the way of criteria or inves-
tigations on the question when all elements of the commutator group
are commutators.”

This is what Oystein Ore says in 1951 in the introduction to his paper “Some
remarks on commutators” [57]. Since Ore made his comments, numerous contribu-
tions have been made to this topic and they are widely scattered over the literature.
Many results have been rediscovered and republished. A case in point is Ore him-
self. The main result of [57] is that the alternating group on n letters, n ≥ 5,
consists entirely of commutators. This was already proved by G. A. Miller [54]
over half a century earlier. The two authors of this paper almost got into a simi-
lar situation after rediscovering one of the major results in this area. Fortunately
we realized this before publication and then concluded that a survey of the major
questions and results in this area was needed, together with a historical overview
of the origins of commutators.
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Commutators came into the world 125 years ago as a by-product of Dedekind’s
first foray into determining group characters of nonabelian groups. In an 1896
letter to Frobenius, Dedekind revealed his ideas and results for the first time. Here
is what Frobenius says in [16]:

“Das Element F , das sich mittelst der Gleichung BA = ABF aus A
und B ergiebt, nenne ich nach DEDEKIND den Commutator von A
und B.” 1

According to Frobenius, Dedekind proved in 1880 that the conjugate of a com-
mutator is again a commutator, and therefore that the commutator subgroup gen-
erated by the commutators of a group is a normal subgroup of the group. Further-
more, Dedekind proved that any normal subgroup with abelian quotient contains
the commutator subgroup, and that the commutator subgroup is trivial if and only
if the group is abelian. However, these results were first published by G. A. Miller
in [52].

The motivating force behind Dedekind’s introduction of commutators was his
goal of extending group characters from abelian to nonabelian groups. The central
object of investigation for Frobenius and Dedekind was the group determinant
and its factorization, out of which arose the theory of group characters. For the
definition of the group determinant and further details we refer to [9], since we are
only interested in a by-product of this concept, namely commutators.

Dedekind had spent the early years of his career at the ETH Zürich (1858-62).
In 1880 he revisited Zürich and became personally acquainted with Frobenius, 18
years his junior, who was at the time a professor at the ETH. This was the starting
point of an on-again-off-again, sometimes intense, correspondence between the two
over many years as detailed by Hawkins in [32] and [33]. Around 1880 Dedekind
was motivated by his studies of the discriminant in a normal field to consider the
group determinant. One of the earliest results he obtained was that for a finite
abelian group of order n the group determinant factored into n linear factors with
the characters as coefficients of the linear factors. In his correspondence with
Frobenius, Dedekind conjectured that for a nonabelian group G the number of
linear factors of the group determinant was equal to the index of the commutator
subgroup G′ in G, with coefficients corresponding to those of the abelian group
G/G′, and in this context commutators and the commutator subgroup made their
appearance.

A good deal of the correspondence between Dedekind and Frobenius deals with
the group determinant, its factorization, and Dedekind’s conjecture stated above.
Dedekind determined the group determinant and its factorization for the symmetric
group S3 and the quaternions of order 8, and in turn, Frobenius did the same for
the dihedral group of order 8. Finally, in his 1896 paper [16] Frobenius proves
Dedekind’s conjecture as part of the general theorem on the factorization of the
group determinant for finite nonabelian groups. For the details of this result we
refer the interested reader to Theorem 3.4 in [9].

1“Following Dedekind, I am calling the element F , which is obtained from A and B with the
help of the equation BA = ABF , the commutator of A and B.”
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Dedekind himself never published anything concerning the group determinant
nor its connection with commutators. However, according to Hawkins [33], Dedekind
decided to pursue some group theoretic research of his own that allowed him to use
his commutators. Earlier, Dedekind had studied normal extensions of the ratio-
nal field with all subfields normal. Some years later these investigations suggested
to him the related problem: Characterize those groups with the property that all
subgroups are normal – he called such groups Hamiltonian. Dedekind found, by
making use of commutators, that determining the answer was relatively simple,
and he communicated this to his friend Heinrich Weber, an editor of the Mathe-
matische Annalen, who urged him to publish the result there. Dedekind eventually
published his results in [11], but only after checking with Frobenius, who assured
him that this result was significant and not a consequence of known results.

As was already mentioned, G. A. Miller was the first to publish the essential
results on the commutator subgroup in [52]. However, he does not attach the label
“commutator” to Dedekind’s correction factor F . The headline of the section in
which he deals with commutators is simply “On the operation sts−1t−1”. Miller’s
motivation in [52] for using the commutator concept was the classification of groups
of order less than 48 up to isomorphism. In his two later publications addressing
commutators, namely [53] and [54], he uses the label commutator and attributes it
to Dedekind. In [53] Miller further expands the basic properties of the commutator
subgroup, and he introduces the derived series of a group. He also shows that the
derived series is finite and ends with the identity if and only if G is solvable.

In his 1899 paper [54] Miller deals with commutators as objects that are of
interest in their own right. He first develops a formula that shows that under
certain conditions the product of two commutators is again a commutator. In
modern notation, he is showing that [tb, a][a, b] = [tb, ab] for a, b, t in a group G.
With the help of this identity he shows in Theorem I that every element of the
alternating group on n letters, n ≥ 5, is a commutator, a result rediscovered
over 50 years later by Ito [37] and Ore [57]. In Theorem II, Miller shows that in
the holomorph of a cyclic group Cn the commutator subgroup consists entirely of
commutators and is equal to Cn, if n is odd, and equal to the subgroup of index
2 in Cn in case n is even. This foreshadows later results by Macdonald [45] and
others who investigate groups with cyclic commutator subgroup in which not all
elements of the commutator subgroup are commutators.

In his publications Miller never addresses the central issue in our context of
whether the commutator subgroup always consists entirely of commutators. In
[53] he states that for generating the commutator subgroup not all commutators
are needed, and he says that a rather small portion will suffice for this purpose.
On the other hand, he shows in Theorem I and II of [54] that for certain groups
the set of commutators is equal to the commutator subgroup. However, as we will
see when discussing [15] below, this question can not have been far from his mind.
The first explicit statement of this question is found in Weber’s 1899 textbook
[74], which is the first textbook to introduce commutators and the commutator
subgroup. After referring to Dedekind’s definition of commutators, Weber states
that the set of commutators is not necessarily a subgroup, but does not provide
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an example to prove his claim. He does prove that the commutator subgroup is
generated by the set of commutators and this subgroup forms a normal subgroup.
It is Fite [15] who provides the first such example in his paper “On metabelian
groups”. It should be mentioned that the metabelian groups in the title are what
we now call groups of nilpotency class two, or, as Fite states it, a group with an
abelian group of inner automorphisms. Fite constructs a group G of order 1024
and nilpotency class 2 in which not all elements of the commutator subgroup are
commutators. He attributes this example to G. A. Miller. In addition he provides
a homomorphic image of G that has order 256, in which the set of commutators is
not equal to the commutator subgroup. We discuss this in detail in Section 5.

To conclude our early history of commutators we mention a 1903 paper by Burn-
side [5]. As detailed earlier, commutators arose out of the development of group
characters. Burnside uses characters to obtain a criterion for when an element of
the commutator subgroup is the product of two or more commutators. So we have
come full circle! This criterion was later extended by Gallagher [17]. We discuss
this in detail in Section 6.

There seemed to be little interest in the topic of commutators for the 30 years fol-
lowing 1903. It should be kept in mind that the familiar notation for commutators
had not yet been developed and its absence apparently stifled further development.
The first occurrence of the commutator notation we could find is in Levi and van der
Waerden’s seminal paper on the Burnside groups of exponent 3 [41]. They denote
the commutator of two group elements i, j as (i, j) = iji−1j−1 and make creative
use of this notation in their proofs. The first textbook using the new notation is by
Zassenhaus [76]. There he gives familiar commutator identities, for example, the
expansion formulas for products, but not the Jacobi identity. However, Zassenhaus
states that in a group with abelian commutator subgroup the following “strange”
(merkwürdig) rule holds: (a, b, c)(b, c, a)(c, a, b) = e. As the source for the defini-
tions, notation and formulas in his section on commutators, Zassenhaus refers to
Philip Hall’s paper [31], which appeared after [41].

The new notation made it possible to develop a commutator calculus to solve
a variety of group theoretic problems that had not been previously accessible. In
turn, the extended use of commutators as a tool brought about renewed interest
in questions about commutators themselves, in particular the question on when
the set of commutators is a subgroup. The remainder of the paper focuses on this
question.

There are significant topics about commutators that we do not cover in this pa-
per. These topics include: viewing the commutator operation as a binary operation;
Levi’s characterization of groups in which the commutator operation is associative
[40]; conditions for when a product of commutators is guaranteed to be a commu-
tator [34]; and investigations into an axiomatic treatment of the commutator laws
by Macdonald and Neumann ([49], [48], and [50]) and by Ellis [14].

In the following two sections we give a survey of conditions which imply that
either the set of commutators is equal to the commutator subgroup or unequal to
it. Sufficient conditions for equality are rather scarce and not very powerful. As
Macdonald acknowledges in [43], a forerunner of [47], there are fundamental logical
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difficulties in this area, for example, the main theorem of [2] implies that there is
no effective algorithm for deciding whether an element is a commutator when G is
a finitely presented group. However, there are necessary and sufficient conditions
for an element of a finite group to be a commutator using the irreducible characters
of the group. Hence, from the character table of a finite group we can read off if
every element of the commutator subgroup is a commutator. Details of this can
be found in Section 6.

We introduce the following notation to facilitate our discussion. For a group G
let K(G) = {[g, h] | g, h ∈ G} be the set of commutators of G and set G′ = 〈K(G)〉,
the commutator subgroup of G. We say that the group element g is a commutator
if it is an element of K(G) and a noncommutator otherwise.

In Section 4 we construct various minimal examples of groups such that the
commutator subgroup contains a noncommutator. These examples are minimal
with respect to the order of the group G and the order of G′, respectively. With
the help of GAP [19] we construct minimal examples G and H where G is a perfect
group G such that K(G) 6= G′ and H is a group in which H ′ ∩ Z(H) is generated
by noncommutators.

As mentioned earlier, the first examples of groups with the set of commutators
not equal to the commutator subgroup are finite nilpotent 2-groups of class 2. In
Section 5 we develop a general construction for nilpotent p-groups of class 2 such
that the commutator subgroup contains a noncommutator. This construction is
obtained by finding various covering groups Ã of an elementary abelian p-group A
of rank n ≥ 4. By a counting argument it is always the case that K(Ã) 6= Ã

′
. We

look at homomorphic images of two covering groups resulting in groups of order p8

with exponent p and p2, respectively, such that the set of commutators is unequal
to the commutator subgroup. These groups appear in the literature ([47] and
[67]) and various ad-hoc methods are used to show that the commutator subgroup
contains a noncommutator. The question arises: What is the smallest integer n
such that for a given prime p there exists a group G of order pn with G′ 6= K(G)?
We conclude Section 5 with an answer to this question.

For a group G the function λ(G) denotes the smallest integer n such that every
element of G′ is a product of n commutators. This function was introduced by
Guralnick in his dissertation [23]. The statement K(G) 6= G′ is then equivalent
to λ(G) > 1. In Section 6 we consider conditions for upper and lower bounds
for λ(G), as well as provide conditions and examples when λ(G) can be specified
exactly. Some of these results involve character theory, in particular, to provide
a necessary and sufficient condition on a finite group G such that λ(G) = n. In
this section we include a well known example by Cassidy [8]. This is a group of
nilpotency class 2 and it is claimed there is no bound on the number of commutators
in the product representing an element of the commutator subgroup. However, a
typographical error impacts the verification of this claim made in [8]. We include
a slightly more general proof of the claim.

For most problems one encounters in group theory the solution in the cyclic case
is trivial. Not so here, where the situation for cyclic commutator subgroups is a
microcosm for the complexity of the general case. In Section 7 we survey groups
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with cyclic commutator subgroup in which the commutator subgroup contains a
noncommutator.

Many results in Sections 2 through 7 have been extended to higher terms of the
lower central series. A survey of these results is the topic of Section 8.

The topic of the final section is a report on the current status on what has
been called in the literature the Ore Conjecture (see [1], [4], [13], [22], [72] and
[73]), which states that every element in a nonabelian finite simple group is a
commutator. The Ore Conjecture is still open for some of the finite simple groups
of Lie type over small fields. The details are given in a table at the end of the paper.
There are many contributions on the Ore Conjecture in the literature concerning
various types of semisimple and infinite simple groups (see for example [58] and
[59]). These contributions go beyond the scope of this survey.

2 Conditions for equality

In this section we discuss mostly conditions implying that the set of commutators is
equal to the commutator subgroup. There are two types of such conditions. Those
of the first type are conditions on the structure of the group or the commutator
subgroup that allow us to conclude the commutator subgroup contains only com-
mutators. Those of the second type are restrictions on the order of a group or its
commutator subgroup. These restrictions are mainly derived from the structural
conditions of the first type. Showing that the restrictions on the orders are best
possible leads to the minimal examples discussed in Sections 4 and 5.

We start with conditions on the structure of the group. One of the most versatile
results is due to Spiegel.

Theorem 2.1 ([68]) Suppose the group G contains a normal abelian subgroup A
with cyclic factor group G/A. Then K(G) = G′.

Motivated by results in [44], Liebeck in [42] gives a necessary and sufficient
condition that an element of the commutator subgroup is a commutator provided
the group has nilpotency class 2. Using this condition, he shows that for a group G
it follows K(G) = G′ whenever G′ ⊆ Z(G) and d(G′) ≤ 2, where d(G′) denotes the
minimal number of generators of G′, and he gives an example that this cannot be
extended to rank 4 or greater. Rodney in [62] extends these results. In particular,
he shows the following.

Theorem 2.2 ([62]) The following two conditions on a group G imply G′ =
K(G):

(i) G is nilpotent of class two and the minimal number of generators of G′ does
not exceed three;

(ii) G′ is elementary abelian of order p3.

The following result by Guralnick generalizes one of Rodney in [62].
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Theorem 2.3 ([28]) Let P be a Sylow p-subgroup of G with P ∗ = P ∩G′ abelian
and d(P ∗) ≤ 2. Then P ∗ ⊆ K(G).

Similarly, Guralnick obtains the following result if p > 3.

Theorem 2.4 ([28]) If G′ is an abelian p-subgroup of G with p > 3 and d(G′) ≤ 3,
then G′ = K(G).

For nilpotent groups, in particular for finite p-groups, the following conditions
of the first type are useful results for arriving at sufficient conditions of the second
type.

Theorem 2.5 ([61]) If G is nilpotent and G′ is cyclic, then G′ = K(G).

Theorem 2.6 ([39]) Let G be a finite p-group with G′ elementary abelian of rank
less than or equal to three. Then K(G) = G′.

With the exception of some additional conditions of type one (in the case of
cyclic commutator subgroups) that we will consider in a later section, Theorems
2.1 – 2.6 are the tools currently available for arriving at sufficient conditions on the
orders of G and G′ that imply K(G) = G′. We start with sufficient conditions on
the orders of G and G′, which are shown to be best possible in Section 4.

Theorem 2.7 ([26]) Let G be a group. If (i) G′ is abelian and |G| < 128 or
|G′| < 16 or (ii) G′ is nonabelian and |G| < 96 or |G′| < 24, then K(G) = G′.

Many examples of groups whose commutator subgroup contains a noncommu-
tator are groups of prime power order. The question arises: For a p-group G of
order pn, what is the largest n such that we can guarantee that K(G) = G′? As
we show in Section 5, the following result is best possible.

Theorem 2.8 ([39]) Let p be a prime and G a group of order pn. Then G′ =
K(G) if n ≤ 5 for odd p and n ≤ 6 for p = 2.

3 Conditions for inequality

In this section we discuss conditions that lead to the conclusion that the set of
commutators is not equal to the commutator subgroup. However, in some cases
restrictions are imposed on the structure of the group or the commutator subgroup,
and then the conditions for inequality turn out to be necessary and sufficient un-
der these restrictions. These sufficient conditions often lead to the construction
of families of groups in which the commutator subgroup always contains a non-
commutator. Often the objective is to find minimal examples in a certain class of
groups. The conditions discussed in this section come mainly from [47], [36], [29],
and [39]. The selection is based on their relevance in the next two sections, which
includes the discussion of minimal examples.
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We start with an almost obvious criterion that one obtains by comparing the
number of possible distinct commutators with the number of elements in the com-
mutator subgroup. The condition is stated formally for the first time in [47], but
earlier applications can be found in [44] and [18].

Theorem 3.1 ([47]) If G is any group and if |G : Z(G)|2 < |G′|, then there are
elements in G′ that are not commutators.

As Macdonald observes, the criterion is very well suited for groups with central
commutator subgroups. With the help of Theorem 3.1, Macdonald constructs
a large family of groups of nilpotency class 2 with the property that the set of
commutators is not equal to the commutator subgroup. Isaacs’ motivation in [36]
for stating his criterion is similar to Macdonald’s. He says that it is well known
for a group G that not every element of G′ need be a commutator, but what is
less well known is a convenient source of finite groups that are examples of this
phenomenon. His examples are wreath products satisfying the following criterion.

Theorem 3.2 ([36]) Let U and H be finite groups with U abelian and H non-
abelian. Let G = U o H be the wreath product of U and H. Then G′ contains a
noncommutator if ∑

A∈A

(
1
|U |

)[H:A]

≤ 1
|U |

,

where A is the set of maximal abelian subgroups of H. In particular, this inequality
holds whenever |U | ≥ |A|.

The above construction yields both solvable and nonsolvable groups with the set
of commutators not equal to the commutator subgroup. Choosing H simple and
U large enough leads to perfect groups, that is, groups such that G′ = G, with the
desired property.

Guralnick’s goal in [29] is to determine bounds on a group G and its commutator
subgroup G′ such that G′ = K(G) always holds whenever the respective orders are
below these bounds. The following criterion rules out groups with a “large” abelian
commutator subgroup.

Theorem 3.3 ([29]) Suppose that A is an abelian group of even order. Then
there exists a group G with G′ ∼= A and G′ 6= K(G) if and only if A ∼= C2 × A1 ×
A2 × A3 or A ∼= C2α × A1 × A2, where the Ai are nontrivial abelian groups and
α ≥ 2.

In [39] sufficient conditions on the nilpotency class and certain elements belong-
ing to the center of a group G are established that guarantee that K(G) 6= G′.
This leads to three classes of groups with the property that the commutator sub-
group contains a noncommutator. The groups of smallest order in these classes are
finite p-groups and appear as minimal examples in Section 5. As it turns out, we
need to establish different criteria depending on whether p > 3, p = 3, or p = 2,
respectively, which form the three classes of groups.
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Proposition 3.4 ([39]) Let p ≥ 5 be a prime and H = 〈a, b〉 be a nilpotent group
of class exactly 4 with [b, a, b] ∈ Z(H) and exp(H ′) = p. Then K(H) 6= H ′.

Proposition 3.5 ([39]) Let H = 〈a, b〉 be a nilpotent group of class exactly 4
with a3, b9, [b, a, b] ∈ Z(H). Then K(H) 6= H ′.

Proposition 3.6 ([39]) Let H = 〈a, b, c〉 be a group of class 3 precisely. If a4, b2,
c2, [a, c], [b, c] and (ab)2 ∈ Z(H), then K(H) 6= H ′.

4 Some minimal examples

MacHale in [51] lists 47 conjectures about groups that are known to be false and
asks for a minimal counterexample for each. Conjecture 7 in his paper states “In
any group G, the set of all commutators forms a subgroup”. MacHale indicates
that a minimal counterexample is known. In fact this is the topic of Guralnick’s
Ph.D. dissertation [23] and several subsequent papers, in particular [26] and [28].

In [26] examples are constructed or cited to show that the conditions of Theorem
2.7 are tight. In this section and subsequent sections we consider the following
classes of groups and find groups of minimal order in each:

Groups such that the commutator subgroup is not equal to the set of commutators
and

(i) the commutator subgroup is abelian;

(ii) the commutator subgroup is abelian of order 16;

(iii) the commutator subgroup is nonabelian;

(iv) the commutator subgroup is nonabelian of order 24;

(v) the intersection of the commutator subgroup and the center is generated by
noncommutators;

(vi) the group is perfect.

In Section 5 we construct a metabelian group G of order 27 such that G′ has
order 16 and K(G) 6= G′. This group is of minimal order in classes (i) and (ii). It
follows from Theorem 2.6 that G′ is not cyclic and in fact in any minimal example
H in classes (i) and (ii) the commutator subgroup H ′ can not be cyclic. Hence we
consider the following variant of classes (i) and (ii):

Groups such that the commutator subgroup is not equal to the set of commutators
and

(i’) the commutator subgroup is cyclic;

(ii’) the commutator subgroup is cyclic of order 60.
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The group G constructed in Example 7.10 has order 240 such that its commutator
subgroup is cyclic of order 60 and K(G) 6= G′. This group is of minimal order in
classes (i’) and (ii’).

Of course MacHale was interested in the smallest group order such that the
commutator subgroup contains a noncommutator. As we see below, such groups
are in class (iii). Minimal examples for each class (i) – (vi), (i’) and (ii’) can be
found using GAP by searching its small groups library. For example, Rotman [65]
states that via computer search the smallest examples G such that K(G) 6= G′

have order 96. Rotman was apparently unaware of Guralnick’s earlier work. The
following example gives explicit constructions of the two nonisomorphic groups of
order 96 whose commutator subgroups contain noncommutators.

Example 4.1 ([23]) There are exactly two nonisomorphic groups G of order 96
such that K(G) 6= G′. In both cases G′ is nonabelian of order 32 and |K(G)| = 29.

(a) Let G = H o 〈y〉, where H = 〈a〉 × 〈b〉 × 〈i, j〉 ∼= C2 ×C2 ×Q8 and 〈y〉 ∼= C3.
Let y act on H as follows: ay = b, by = ab, iy = j and jy = ij.

(b) Let H = N o 〈c〉, where N = 〈a〉 × 〈b〉 ∼= C2 ×C4 and 〈c〉 ∼= C4. Let c act on
N by ac = a and bc = ab. Let G = H o 〈γ〉 with 〈γ〉 ∼= C3, where aγ = c2b2,
bγ = cba, cγ = ba.

The group of Example 4.1 (a) appears in Dummit and Foote’s textbook [12] as
an example of a group G with K(G) 6= G. No claim of minimality is made.

Guralnick in [26] describes the following class of groups that yields many exam-
ples of groups G in which K(G) 6= G′. Let

G1 = 〈a, b, x |a4 = b4 = x3 = 1, xax−1 = b, xbx−1 = ab, (4.1.1)

a2 = b2, aba−1 = b−1〉.

Then G1 = 〈H1, x〉, where H1 = G′
1 = 〈a, b〉 ∼= Q8. Choose G2 to be any

nonabelian group with normal abelian subgroup H2 of index 3. Then there exists
y ∈ G2 such that G2 = 〈H2, y〉. Let G be the subgroup of G1 × G2 generated by
H1 ×H2 and the element (x, y). Then G has order 24|H2| and K(G) 6= G′. Note
that G′ = G′

1 ×G′
2. In particular, for any 1 6= g ∈ G′

2 the element (a2, g) is not a
commutator. Our next three examples arise from this construction for particular
choices of G2.

Example 4.2 Let G1 be defined as in (4.1.1) and take G2 = A4 and H2 = G′
2
∼=

C2 × C2. Then G has order 96 and G′ ∼= Q8 × C2 × C2.

The group constructed in Example 4.2 is isomorphic to the group in Example
4.1 (a). However, Example 4.1 (b) cannot be constructed in this manner, since
there is not another nonabelian group of order 12 with a normal subgroup of order
4.

The following example gives a group of minimal order in class (iv).
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Example 4.3 Let G1 be the group defined in (4.1.1). Take G2 to be any non-
abelian group of order 27 so that |H2| = 9 and G′

2
∼= C3. Then G′ ∼= Q8 × C3,

which is nonabelian of order 24. The order of G is 24 · 9 = 216.

We finish this section by giving minimal examples of groups G such that K(G) 6=
G′ with some additional property. The first example is a group G in which G′∩Z(G)
is generated by noncommutators. The question of whether such a group exists was
asked by R. Oliver and an example was given by Caranti and Scopolla [6]. Their
example has order p14, where p is an odd prime, but it is noted in the paper that
a smaller example exists. Our example with this property has order 216 which by
a search of the small groups library in GAP is the smallest such example.

Example 4.4 Set G1 = 〈H1, x〉 as in (4.1.1) and set

G2 = 〈c, y | c9 = y3 = 1, y−1cy = c4〉 ∼= C9 o C3

where H2 = C9 = 〈c〉 and C3 = 〈y〉. Let G = 〈H1 × H2, {(x, y)}〉. Then Z(G) =
〈(a2, c3)〉 ∼= C6. However, since c3 ∈ G′

2, we have that (a2, c3) is a noncommutator,
as needed.

To find a perfect group G in which K(G) 6= G′ we can use the group construction
and criterion from Theorem 3.2 due to Isaacs [36]. The smallest perfect group
obtainable from this construction is the following.

Example 4.5 Let G = C2 o A5. Then G is a perfect group with |G| = 260 · 60.
To see that G′ 6= K(G) we note that the maximal abelian subgroups of A5 are
its Sylow subgroups. There are ten maximal abelian subgroups of order 3, five
maximal abelian subgroups of order 4, and six maximal abelian subgroups of order
5. This gives

10
(

1
3

)20

+ 5
(

1
4

)15

+ 6
(

1
5

)12

≤ 1
60

,

which by Theorem 3.2 shows that K(G) 6= G′.

A search of the perfect groups in GAP shows that the smallest perfect group G
that contains an element that is not a commutator has order 960. This group can
be visualized in the following way. Let H = C5

2 o A5, where we think of A5 having
a “wreath action” on C5

2 . Set G = H/Z(H). Then G is a perfect group of order
25 · 60 · 1

2 and has the property that K(G) 6= G′.

5 p-Groups

The earliest examples of groups G in the literature for which K(G) 6= G′ are 2-
groups. Fite [15] attributes the following group of nilpotency class 2 and order
1024 to G. A. Miller, represented here as a subgroup of S24:

G = 〈(1, 3)(5, 7)(9, 11), (1, 2)(3, 4)(13, 15)(17, 19),
(5, 6)(7, 8)(13, 14)(15, 16)(21, 23),
(9, 10)(11, 12)(17, 18)(19, 20)(21, 22)(23, 24)〉.
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He states that G′ contains 36 commutators and 28 noncommutators. Fite then
considers a homomorphic image of G, represented here as a subgroup of S16:

H = 〈(1, 3)(5, 7)(9, 11), (1, 2)(3, 4)(13, 15),
(5, 6)(7, 8)(13, 14)(15, 16), (9, 10)(11, 12)〉.

The group H has order 256 with |K(H)| = 15 and |H ′| = 16. The group H of Fite
is used in several textbooks, for example, Carmichael [7] and an early edition of
Rotman [64], as an example of a group in which the commutator subgroup is not
equal to the set of commutators.

Miller’s group G above is the basis for our study of p-groups of nilpotency class 2
for which K(G) 6= G′. For some normal subgroups S of G′ of order 4 the property
K(G/S) 6= (G/S)′ holds; the group H given by Fite is an example. In fact there
are several such subgroups of order 4 in G for which this is true, and explicit
constructions of such quotients can be found in the literature, for example, in [46].

We now adapt the construction of the 2-group G above to a p-group Ã that is
the covering group of an elementary abelian p-group that has the property that
Ã

′ 6= K(Ã). 2

Definition 5.1 Let Q be a finite group and let M(Q) be the Schur multiplier of
Q. A group Q̃ is called the covering group of Q if Q̃ contains a normal subgroup
N such that N ⊆ Z(Q̃) ∩ Q̃

′
, N ∼= M(Q), and Q̃/N ∼= Q.

Schur in [66] showed that every finite group has a covering group. Now let A be
an elementary abelian p-group of rank n ≥ 2. Then it can be shown that M(A)
is elementary abelian of order pn(n−1)/2 and hence that the covering group Ã has
order pn(n+1)/2. The center of Ã equals Ã

′
; therefore Ã is nilpotent of class 2 and

M(A) ∼= Ã
′
.

For n ≥ 6, where n is the rank of A, we have |Ã/Z(Ã)| = pn. Hence in this case
|Ã/Z(Ã)|2 < |Ã′ |, and we can use Theorem 3.1 to see that K(Ã) 6= Ã

′
. We can

actually take n ≥ 4 and note that the covering group contains elements in Ã
′
that

are not in K(Ã). This is because the number of nonidentity commutators in K(Ã)
is exactly

|K(Ã)| − 1 =
(pn − 1)(pn−1 − 1)

p2 − 1
. (5.1.1)

For n ≥ 4 we have that |K(Ã)| < |Ã′ |. Moreover, there are homomorphic images
H of Ã such that K(H) 6= H′. This is exactly the case for Miller’s group G and
Fite’s group H above for p = 2 with G = Ã and H = H.

An explicit construction of various covering groups of the elementary abelian
p-group of rank n ≥ 6 can be found in Macdonald [47]. Macdonald constructs
these groups explicitly for the purpose of finding groups G for which G′ 6= K(G).
As noted above, the covering groups for the elementary abelian p-group A of rank
4 have the property that K(Ã) 6= Ã

′
. In the following example we construct a

2The authors would like to thank R. Gow and R. Quinlan for pointing out the connection
between covering groups and this analysis of nilpotent groups of class 2 .
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covering group of exponent p for n = 4 and p > 2. This group can be found
in [67] and is attributed to W. P. Kappe. Because the group has exponent p it
is straightforward to show explicitly that a particular element of the commutator
subgroup is not a commutator and one does not need the counting argument of
(5.1.1). The details can be found in [67].

Example 5.2 Let G = 〈g1, g2, g3, g4〉 be the free nilpotent group of class 2 and
exponent p, where p > 2 is a prime. The group G has order p10, G′ = Z(G) ∼= C6

p

and G/G′ ∼= C4
p . Hence G is the covering group for C4

p as needed, and we have
K(G) 6= G′ by (5.1.1).

Our next example is also a covering group of A for n = 4 and p a prime. This
group has exponent p2.

Example 5.3 Let H = 〈g1, g2, g3, g4〉 be the free nilpotent group of class 2 and let
p be an odd prime. Consider the following relations:

R = {gp2

1 = gp2

2 = gp2

3 = gp2

4 = 1,

gp
1 = [g1, g3], g

p
2 = [g2, g4], g

p
3 = [g1, g2], g

p
4 = [g2, g3]}.

Let G = H/N , where N is the normal closure of R. Then G is a covering group
for C4

p , and K(G) 6= G′ by (5.1.1).

For Examples 5.2 and 5.3 we construct a homomorphic image of each group
of order p8. The first quotient, given in Example 5.4, is the smallest nilpotent
group of class 2 and exponent p such that the set of commutators is unequal to the
commutator subgroup. This group can also be found in [67].

Example 5.4 Let G be the group in Example 5.2 and let S be the normal subgroup
of G generated by [g3, g4] and [g2, g4]. The group Q = G/S is a group of order p8

and exponent p in which K(Q) 6= Q′.

The following group is a quotient of the group of Example 5.3. It is isomorphic
to the group constructed by Macdonald in [46] as an example of a p-group in which
the set of commutators is unequal to the commutator subgroup.

Example 5.5 Let G be the group in Example 5.3. Let S be the normal subgroup
generated by [g1, g4] and [g3, g4]. Then Q = G/S has order p8, exp(Q) = p2, and
Q has the property K(Q) 6= Q′.

It is an open question whether every nilpotent group G of class 2 such that
K(G) 6= G′ is a homomorphic image of a cover group of some abelian group.

The nilpotent groups of class 2 do not provide examples of p-groups of order pn

with n minimal such that K(G) 6= G′. As we can see from (i) of Theorem 2.2,
any proper homomorphic image H/L of H of order less than p8 has the property
K(H/L) = (H/L)′. We finish this section with three examples to show that the
bounds on n given in Theorem 2.8 are sharp.
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Example 5.6 ([39]) Let p be a prime with p > 3 and let V = 〈u〉×〈v〉×〈w〉×〈z〉
be an elementary abelian p-group of rank 4. Let B = V o〈b〉, the semidirect product
of V with a cyclic group 〈b〉 of order p. The defining relations of B are those of V
along with

bp = 1, [u, b] = w, and [v, b] = [w, b] = [z, b] = 1.

Similarly, let G = B o 〈a〉 be the semidirect product of B with a cyclic group 〈a〉
of order p. The defining relations of G are those of B along with

[b, a] = u, [u, a] = v, [v, a] = z, ap = [w, a] = [z, a] = 1.

It can be verified that G has order p6, nilpotence class 4, and exp(G) = p. Fur-
thermore, u = [b, a], v = [b, a, a], w = [b, a, b] and z = [b, a, a, a]. Thus G satisfies
the conditions of Proposition 3.4. We conclude that K(G) 6= G′.

The next two examples are minimal examples from the classes of groups found
in Propositions 3.5 and 3.6, respectively. These examples are different than those
found in [39] and show that minimal examples in these classes are not unique.

Example 5.7 Let A = 〈a〉 × 〈b〉 ∼= C3 × C9. Let B = A o 〈x〉 be the semidirect
product of A with a cyclic group 〈x〉 of order 9. The defining relations of B are
those of A along with x9 = [a, x] = 1, [b, x] = a2. We form G = B o 〈y〉 as a
semidirect product of B with a cyclic group 〈y〉 of order 3. The relations of G are
those of B along with y3 = [a, y] = 1, [b, y] = x and [x, y] = b6. The order of G is
36 and G = 〈b, y〉, since x = [b, y] and a = [x, b]. The group is nilpotent of class 4,
since [b, y, y, y] = [x, y, y] = [b6, y] = x6 6= 1. Now b9 and y3 are in the center of G
because b9 = y3 = 1. It can be verified that [b, y, b] is also in Z(G). It follows by
Proposition 3.5 that K(G) 6= G′.

Example 5.8 Let A = 〈a〉 × 〈b〉 ∼= C2 ×C8. Let G = A o 〈x, y〉 be the semidirect
product of A with Q8 = 〈x, y〉, the group of quaternions. The defining relations of
G are those of A and Q8 along with [a, x] = [a, y] = 1, [b, x] = b6, [b, y] = ab2. The
group G has order 128, is nilpotent of class 3 and G = 〈x, bx3, y〉, since [y, b] = a.
It is readily verified that G satisfies the conditions of Proposition 3.6, and hence
K(G) 6= G.

The group G constructed in Example 5.8 is metabelian with |G′| = 16. The
only groups G of order less than 128 for which G′ 6= K(G) are the two groups of
order 96 found in Example 4.1. These two groups have nonabelian commutator
subgroups. Hence the group constructed in Example 5.8 is a minimal group in the
classes (i) and (ii) listed in Section 4.

6 The function λ(G)

We define the value λ(G) for a group G to be the the smallest positive integer n
such that every element of G′ is a product of n commutators and if n is unbounded
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then we define λ(G) = ∞ [23]. The condition K(G) 6= G′ is equivalent to λ(G) > 1.
In this section we consider conditions for upper and lower bounds for λ(G), as well
as providing conditions and examples when λ(G) can be specified exactly.

Obtaining an arbitrary lower bound for λ(G) does not require a complicated
structure for G′. The following result is due to Macdonald [45] and is a corollary
to Theorem 7.1.

Theorem 6.1 ([45]) For any positive integer n there is a group G such that G′

is cyclic and λ(G) > n.

Guralnick in [27] also investigates groups with cyclic commutator subgroup of
order m and gives necessary and sufficient conditions such that λ(G) > f(m). The
details can be found in the next section (Theorem 7.8).

In [63] and [25] finite upper bounds on λ(G) are applied to prove a classical
result of Schur that if [G : Z(G)] is finite then G′ is finite. For a, b in G and u, v
in Z(G) we have [au, bv] = [a, b]. Hence G has at most [G : Z(G)]2 commutators.
When [G : Z(G)] is finite it follows that G′ is finite exactly when λ(G) is finite.
Setting [G : Z(G)] = n, Rosenlicht [63] shows λ(G) ≤ n3. Guralnick in [25] proves
λ(G) < τ(n)/2, where τ(n) is the number of divisors of n and improves this bound
to λ(G) < 3ρ(n)/2, where ρ(n) is the number of prime divisors of n (counting
multiplicity).

Under certain conditions on the group G the bounds on λ(G) can be improved
as follows.

Theorem 6.2 ([25]) Let G be a group.

(i) If G is nilpotent and G/Z(G) is generated by n elements, then λ(G) ≤ n. If,
in addition, G′ ⊆ Z(G), then λ(G) ≤ bn

2 c.

(ii) If G is finitely generated and is nilpotent-by-nilpotent, then λ(G) is finite.

Nikolov and Segal in [56] prove that every subgroup of finite index in a (topo-
logically) finitely generated profinite group is open. The next theorem is a special
case of this result. 3

Theorem 6.3 ([56]) There is a function g defined on the positive integers such
that if G is a finite group generated by d elements, then λ(G) ≤ g(d).

In the following example Guralnick constructs groups G with λ(G) = n for every
positive integer n.

Example 6.4 ([25]) Let p be a prime and let n be a positive integer. Let

H = H(n, p) = 〈x1, . . . , x2n | xp
i = [xi, [xj , xk]] = 1, 1 ≤ i, j, k ≤ 2n〉

and
N = N(n, p) = 〈[xi, xj ] | i + j > 2n + 1〉.

Set G = G(n, p) = H/N . Then λ(G) = n.
3The authors would like to thank R. Guralnick for pointing out this result to us.
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Proof We observe that H is nilpotent of class 2 and |H| = p2n+(2n
2 ) with exp H = p

for p odd. We have N /H, since N ⊆ Z(H) and |N | = pn2−n. Thus |G| = |H/N | =
p2n+n2

. We observe H ′ = Z(H) and G′ = Z(G), as well as [H : Z(H)] = [G :
Z(G)] = p2n. Thus by (i) of Theorem 6.2 it follows that λ(G) ≤ n. Lemma 5.1
in [25] yields that there exists an element in G′ which is the product of exactly n
nontrivial commutators. 2

We conclude this discussion on bounds for λ(G) by considering a well-known
example of Cassidy [8] that replaced Fite’s example of order 256 [15] as an example
of a group in which the set of commutators is not a subgroup (see e.g. [65]).
Our context here is different. It is well known that in free groups, even of finite
rank, λ(G) is not bounded (see [60]). Cassidy’s example, which is not finitely
generated, but is nilpotent of class 2, shows that the assumption of being finitely
generated cannot be omitted from Theorem 6.2 (ii). As already mentioned in the
introduction, the proof given in [8] contains a major typographical error. Our
example below addresses a slightly more general situation. 4

Example 6.5 Let f and g be polynomials over a field K in x and y, respectively,
and let h be a polynomial in x and y with coefficients in K. Let m(f, g, h) be the
matrix 1 f(x) h(x, y)

0 1 g(y)
0 0 1

 .

Then the set of matrices m(f, g, h) forms a group G under matrix multiplication.
The group G is nilpotent of class 2 with G′ = Z(G) and λ(G) = ∞.

Proof It is easy to see that the set of matrices forms a group as claimed and
that the center of G consists of the matrices of the form m(0, 0, h). An arbitrary
commutator in G has the form

[m(f1, g1, h1),m(f2, g2, h2)] = m(0, 0, f1g2 − f2g1). (6.5.1)

It follows that G′ ⊆ Z(G). Conversely, we have

m(0, 0,Σaijx
iyj) =

∏
[m(aijx

i, 0, 0),m(0, yj , 0)],

hence Z(G) ⊆ G′, and our claim follows.
To show λ(G) = ∞, let n be a positive integer and h(x, y) =

∑2n
i=0x

iy2n−i.
We will show that m(0, 0, h(x, y)) is not the product of n commutators. Assume
otherwise. Without loss of generality we can write

m(0, 0, h(x, y)) =
n∏

j=1

[m(sj(x), tj(x), 0),m(uj(x), vj(y), 0)],

4Special thanks go to W. P. Kappe for providing the authors with this proof.
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where sj(x) =
∑
i
aijx

i, uj(x) =
∑
i
bijx

i, and the aij and bij are elements of K. By

(6.5.1) it follows that

h(x, y) =
n∑

j=1

(sj(x)vj(y)− uj(x)tj(y)). (6.5.2)

In (6.5.2) we compare the coefficients of the powers of x which are polynomials in
y and obtain the following 2n+1 linear relations in the vector space of polynomials
in y over K

y2n−i =
n∑

j=1

(aijvj(y)− bijtj(y)) for i = 0, 1, . . . , 2n. (6.5.3)

Set V = span{1, y, . . . , y2n} and W = span{t1(y), . . . , tn(y), v1(y), . . . , vn(y)}. By
(6.5.3) it follows V ⊆ W . We observe dim W ≤ 2n and dim V = 2n + 1, since
{1, y, . . . , y2n} is a linearly independent set, so 2n + 1 ≤ 2n, a contradiction. 2

A few remarks on the nature of the typographical error in [8] are in order.
The critical element in the commutator subgroup is defined as m(0, 0, h), where
h(x, y) =

∑2n+1
i=0 xiyj . No specification for j is given. According to P. J. Cassidy 5,

the j should be replaced by i. After some minor adjustments of indices, the proof
can be carried out as indicated in [8].

Character theory for finite groups provides necessary and sufficient conditions
as to when an element is a commutator, and allows one to compute λ(G). Oft
quoted is Honda [35], but these ideas were known to Burnside [5] and, even earlier,
to Frobenius.

Theorem 6.6 Let G be a finite group and g an element of G. Consider the
following function σ : G 7→ C defined by

σ(g) =
∑

χ∈Irr(G)

χ(g)
χ(1)

. (6.6.1)

Then g is a commutator if and only if σ(g) 6= 0.

A brute force method for testing whether or not λ(G) > 1 is to compute the
set S = {g ∈ G | σ(g) 6= 0} and check whether |S| = |G′|. Since the irreducible
characters are functions on the conjugacy classes, we know that all elements of a
conjugacy class are either commutators or are not commutators. Hence in general
we can refine our test by computing the following sum:∑

c∈C
|c| · σ′(c(g)),

5Personal communication with P. J. Cassidy by the authors.
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where C is the set of conjugacy classes, c(g) is a representative of the conjugacy
class c, and

σ′(g) =

{
0 if σ(g) = 0
1 otherwise.

Our observations now lead to the following necessary and sufficient criterion such
that λ(G) > 1 in a finite group G. This result is a consequence of Theorem 6.6
and until now has not been explicitly stated in the literature.

Corollary 6.7 Let G be a finite group. Then λ(G) > 1 if and only if∑
c∈C

|c|σ′(c(g)) 6= |G′|. (6.7.1)

For perfect groups the test is even simpler. If G is a perfect group, then λ(G) > 1
if and only if any σ(c(g)) is equal to zero.

Let fχ be the degree of the irreducible character χ. Define m(G) to be the
cardinality of the set {fχ | χ ∈ Irr(G)}. Guralnick gives an upper bound for λ(G)
using m(G).

Theorem 6.8 ([25]) If G is finite, then λ(G) < m(G).

Guralnick also states a lemma based on a result in [17], from which λ(G) can be
exactly computed for a finite group G.

Lemma 6.1 ([25]) Let G be a finite group with irreducible characters χ1, . . . , χh.
Consider the expression

S(k, g) =
h∑

i=1

f1−2k
i χi(g). (6.8.1)

Then λ(G) = n if and only if S(n, g) = 0 for all g ∈ G′ and S(n − 1, g) 6= 0 for
some g ∈ G′.

The criterion of Lemma 6.1 can be implemented in GAP. It turns out that every
group G of order less than 1000 has λ(G) ≤ 2. The question arises: What is the
smallest group G such that λ(G) = 3, and more generally, for which λ(G) = n?

7 Cyclic commutator subgroups

In [45], I. D. Macdonald begins the discussion on groups with cyclic commutator
subgroups by showing that the commutator subgroup of such groups need not have
a generating commutator. There are three follow-up papers, [61], [20] and [27], with
more or less the same title, which expand on Macdonald’s earlier result. These four
papers are the topic of discussion in this section.

Macdonald’s result is summarized in the following theorem.
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Theorem 7.1 ([45]) If G′ is cyclic and either G nilpotent or G′ is infinite, then
G′ is generated by a suitable commutator. However, for any given positive integer
n there is a group G in which G′ is cyclic and generated by no set of fewer than n
commutators.

It should be mentioned here that by a result of Honda [35], for any g ∈ G′ every
generator of 〈g〉 is the product of the same number of commutators.

The main result of Rodney’s paper is a sufficient condition for every element of
G′ to be a commutator, where G is a group with finite cyclic commutator subgroup
generated by a commutator.

Theorem 7.2 ([61]) Let G′ be cyclic of finite order with 4 - |G′|. Suppose G′ =
〈c〉 with c = [a, b]. Let µ and ν be integers such that ca = cµ and cb = cν . If one
of the following four conditions fails to hold for every prime divisor p of |G′|, then
G′ consists entirely of commutators:

I. µ− 1 ≡ 0 mod p, ν − 1 ≡ 0 mod p;

II. µ− 1 ≡ 0 mod p, ν − 1 6≡ 0 mod p;

III. µ− 1 6≡ 0 mod p, ν − 1 ≡ 0 mod p;

IV. µ− 1 6≡ 0 mod p, ν − 1 6≡ 0 mod p.

As one can observe, the four conditions are mutually exclusive and generate a
partition on the set of primes dividing |G′|. The statement of the theorem then
says that K(G) = G′ if at least one of the equivalence classes is empty. This leads
to the following corollary not stated in [61].

Corollary 7.3 If G′ = 〈[a, b]〉, |G′| is finite and at most three primes divide |G′|,
but 4 - |G′|, then K(G) = G′.

We observe that the assumption of being generated by a commutator can be
dropped in the case G′ is cyclic of p-power order. Finally, Rodney obtains the
following corollary to Theorems 7.1 and 7.2.

Corollary 7.4 ([61]) If G′ is cyclic and either G is nilpotent or G′ is infinite, then
G′ = K(G).

In [20], Gordon, Guralnick and Miller determine all integers n such that there is
a group G in which the set of commutators has fewer than n elements and that set
generates a cyclic subgroup of order n. At the same time, they obtain a sufficient
condition on n such that for cyclic G′ of order n we have the equality K(G) = G′.
Both results are under the assumption that G′ is generated by a commutator.

Theorem 7.5 ([20]) Let p and qi be primes. Suppose that either

(i) n = pα · qα0
0 · qα1

1 · · · qαh
h , h ≥ p and qi ≡ 1 mod p for i = 0, 1, . . . , p, or

(ii) n = 2α · qα0
0 · qα1

1 · · · qαh
h , α ≥ 2, h ≥ 1.
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Then there exists a group G such that G′ = 〈a〉 is cyclic of order n, a is a commu-
tator but not every element of G′ is a commutator.

Theorem 7.6 ([20]) Let p and pi be primes. Suppose that G′ = 〈a〉, where a is
a commutator. Assume that a has order n, where either

(i) n = pα1
1 pα2

2 · · · pαr
r with 4 - n and |Ji| ≤ pi, where Ji = {j | pj ≡ 1 mod pi},

or

(ii) n = 2α · pβ , α ≥ 2, β ≥ 0.

Then every element of G′ is a commutator.

Unaware of [61], Gordon et al. show in [20] that for cyclic G′ either of infinite or
p-power order, or for G nilpotent, it follows that K(G) = G′. That paper concludes
with the following interesting result.

Corollary 7.7 ([20]) Suppose that G is a commutator subgroup of a group H
and that G′ is cyclic. Then every element of G′ is a commutator.

In [27] all pairs of integers (m,n) are determined for which there exists a group
G with G′ cyclic of order n and λ(G) > m. The results are summarized in the
following theorem.

Theorem 7.8 ([27]) Let p and pi be primes.

(a) Given the ordered pair (n, m) with m ≥ 2, there exists a group G with G′

cyclic of order n and λ(G) > m if and only if

(i) n = pα1
1 · · · pαν

ν , ν ≥ 22m+1 − 1, or

(ii) n = 2αpα2
2 · · · pαν

ν , ν ≥ 22m+1 − 3.

(b) There exists a group G with G′ cyclic of order n and λ(G) > 1 if and only if

(i) n = pα1
1 · · · pαν

ν , ν ≥ 7,

(ii) n = 3αpα2
2 · · · pαν

ν , pi ≡ 1(mod 3) for i = 1, 2, 3, 4,

(iii) n = 2pα2
2 · · · pαν

ν , ν ≥ 3, or

(iv) n = 2αpα2
2 · · · pαν

ν , ν ≥ 2, α ≥ 2.

In this context Guralnick takes up the original theme of Macdonald [Mac63], that
is the study of groups with cyclic commutator subgroup in which the generators
are noncommutators.

Theorem 7.9 ([27]) Let p and pi be primes. Consider a natural number n satis-
fying one of the following conditions:

(i) n = pα1
1 · · · pαr

r , r ≥ 22m+1 − 1;

(ii) n = 2αpα2
2 · · · pαr

r , r ≥ 22m+1 − 3.
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Then there exists a group G with G′ cyclic of order n such that no generator of
G′ is a product of m commutators. Conversely, let H = 〈a〉 be cyclic of order n.
If there exists a group G with G′ = H and no generator of H is a product of m
commutators, then n satisfies condition (i) or (ii).

According to Theorem 7.9 the minimal order for a cyclic commutator subgroup
with none of the generators being a commutator is 2810. The smallest n and
the smallest group order for which there exists a group with cyclic commutator
subgroup of order n, where the set of commutators is not equal to the commutator
subgroup, is given in [20], and follows from Theorem 7.8. Similar examples are
given in [61], but no claim of minimality is made.

Example 7.10 ([20]) Let G = 〈x, y, a〉 with relations a60 = x8 = y6 = 1,
x−1ax = a29, y−1ay = a19, [x, y] = a, x2 = a15, y2 = a40. Then |G| = 240,
G′ = 〈a〉 and |G′| = 60. This group has minimal order in both classes (i’) and (ii’)
defined in Section 4.

8 Higher commutators

The topic of this section is the relationship between the set of r-fold simple com-
mutators and the r-th term of the lower central series, the subgroup generated by
them. This relationship is studied in [18], [38], [10], [29], and [30]. Since each
paper extends and generalizes some of the results of the preceding ones, we discuss
them in chronological order. The notation in these papers is not uniform. Thus
we adopt the following notation. For x1, x2, . . . , xr ∈ G, let [x1, x2] = x−1

1 x−1
2 x1x2

and recursively define [x1, . . . , xr−1, xr] = [[x1, . . . , xr−1], xr] as the r-fold simple
commutator of x1, . . . , xr. Let Kr(G) = {[x1, . . . , xr] | x1, . . . , xr ∈ G}, the set
of r-fold simple commutators of G, and let γr(G) = 〈Kr(G)〉, which is the r-th
term of the lower central series. Observe that K2(G) = K(G) and G′ = γ2(G).
In this section we deal with the case when r > 2. We also extend the function
λ(G), introduced in Section 6, to higher terms of the lower central series. We say
that λr(G) is the smallest integer n such that every element in γr(G) is a product
of n elements in Kr(G) and if n is unbounded we define λr(G) = ∞. Note that
λ(G) = λ2(G).

In [18], Gallagher extends results obtained in [17] for the commutator subgroup
to higher terms of the lower central series. As in [17], the proofs involve intricate
but elementary character calculations. His main result is the following.

Theorem 8.1 ([18]) Let G be a group. If

n >

(
2r−1

3

)1/2

log(2|γr(G)| − 2),

then each element of γr(G) is a product of n commutators.

In [38], the results of Macdonald [45] on cyclic commutator subgroups are ex-
tended to the terms of the lower central series. Specifically, the following analogue
of Theorem 7.1 is proved.
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Theorem 8.2 ([38]) If γr(G) is cyclic and either G is nilpotent or γr(G) is infinite,
then γr(G) is generated by a suitable commutator of weight r. For any given integer
n, however, there is a group G in which γr(G) is cyclic and generated by no set of
fewer than n commutators of weight r.

The examples mentioned in the above theorem are the same as given by Mac-
donald in [45]. The next theorem is a partial extension of Spiegel’s result [68] (see
Theorem 2.1) to higher terms of the lower central series.

Theorem 8.3 ([38]) Let G be a metabelian group. If γr(G) and the automor-
phism group induced on γr(G) are both cyclic, then Kr(G) = γr(G).

In [10] Dark and Newell extend some of the results in [45], [61], [42], [24], and
[38] on commutator subgroups with a small number of generators to the higher
terms of the lower central series. They give examples to show that some results
for γ2(G) do not necessarily hold for higher terms of the lower central series. The
next theorem extends results of [61] and [38] (see Corollary 7.4 and Theorem 8.2).

Theorem 8.4 ([10]) If γr(G) is cyclic and either G is nilpotent or γr(G) is infinite,
then γr(G) = Kr(G).

It should be mentioned here that, as shown in [29], the assumption in the above
theorem that G is nilpotent can be replaced by the weaker condition that γ∞(G)
is finite and cyclic of p-power order, where

γ∞(G) =
∞⋂
i=2

γi(G).

The next theorem establishes that Rodney’s results [62] (see Theorem 2.2) can
only be extended in a limited way to higher terms of the lower central series. It is
obvious from Theorem 8.4 that for cyclic and central γr(G) we have γr(G) = Kr(G)
for all r. However, as the next theorem shows, this cannot be extended to the case
that d(γr(G)) ≥ 2, if r ≥ 3. (Recall that for a group G we denote the minimal
number of generators of G by d(G).)

Theorem 8.5 ([10]) For every integer r ≥ 3 there is a metabelian group G such
that γr+1(G) = 1, d(γr(G)) = 2, and γr(G) 6= Kr(G).

If |γr(G)| is finite and central, then (i) of Theorem 2.2 can be extended to
d(γr(G)) = 2, if r ≥ 3. But the theorem is not true if d(γr(G)) = 3, in particular
(ii) of Theorem 2.2 does not hold, if r > 2.

Theorem 8.6 ([10]) If γr+1(G) = 1 and γr(G) is finite with d(γr(G)) = 2, then
γr(G) = Kr(G). However, for every integer r ≥ 3, and every prime p, there is a
metabelian group G such that γr+1(G) = 1, γr(G) is an elementary abelian p-group
of rank 3, and γr(G) 6= Kr(G).
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Guralnick in [29] quantifies the results for r ≥ 3 of [10] in the same way as this
is done for r = 2 in [20] and [27] for Macdonald’s results in [45]. The main result
of [29] is the following.

Theorem 8.7 ([29]) Suppose r ≥ 3. There exists a group G with γr(G) cyclic
of order n and λr(G) > k if and only if n = pα1

1 . . . pαm
m , where the pi are distinct

primes and m ≥ 2k+1 − 1.

The conditions for the case r = 2, discussed in [27], are much more complicated
than those of the above theorem for r > 2 (see Theorem 7.8). As shown in [20],
a generating commutator for γ2(G) does not imply that λ2(G) = 1 (see Theorem
7.5). Similar examples can be constructed for r > 2. The following result is of
interest in this context.

Theorem 8.8 ([29]) For any r ≥ 2, if γr(G) = 〈a〉 and a ∈ (Kr(G))e, then
γr(G) = (Kr(G))e+1.

Guralnick in [30] extends various results on Sylow subgroups of the commutator
subgroup to the Sylow subgroups S of higher terms of the lower central series. The
main result is summarized in the following theorem.

Theorem 8.9 ([30]) Suppose γr(G) is finite and P ∈ Sylp(γr(G)) with P abelian
of rank at most 2. If any of the following conditions hold then P ⊆ Kr(G):

(i) p ≥ 5;

(ii) P is cyclic;

(iii) exp(P ) = p;

(iv) P ∩ γ∞(G) 6= 1;

(v) P ∩ γr+1(G) = 1;

(vi) r ≤ 2.

The result for r = 2 can be found in [62] and [28] (see Theorems 2.3 and 2.4).
The main idea of the proof of Theorem 8.9 is to reduce to the case where P = γr(G).
With this additional hypothesis, the proofs of (iii) and (iv) are given in [29], while
the proofs for (ii) and (v) can be found in [10]. The condition (i) is new here. An
example is given in [30] showing that the condition p ≥ 5 cannot be replaced by
p = 2, and possibly not by p = 3. Examples in [10] and [29] show that rank 2
cannot be replaced by rank 3. Guralnick’s paper concludes with some results on
the more general problem of when P ⊆ (Kr(G))k.
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9 Ore’s conjecture

After proving that every element in the alternating group An, n ≥ 5, is a com-
mutator, Ore [57] states the following: “It is possible that a similar theorem holds
for any simple group of finite order, but it seems that at present we do not have
the necessary methods to investigate the question.” Now over fifty years later, the
question is still not answered, no counterexample has been found, but for most
families of finite simple groups what is now called Ore’s Conjecture has been veri-
fied. The open cases are finite simple groups of Lie type over small fields. In this
section we give a full account of which cases are settled and which are still open.

Although the classification of finite simple groups did not result in a general
method for proving his conjecture, as Ore had hoped, it led to a better understand-
ing of finite simple groups, allowing for a piecemeal approach and the potential to
know that at some point all cases have been covered. Investigations of finite simple
groups led to the following stronger conjecture attributed to John Thompson (see
e.g. [1] and [13]), which states that every finite simple group G contains a conju-
gacy class C such that C2 = G. Thompson’s Conjecture implies Ore’s Conjecture
but the converse does not hold. To see that Ore’s Conjecture is weaker, note that
the infinite restricted alternating group A has no class C such that C2 = A. But
every element of A has finite support and thus is clearly a commutator [4]. The
status of Thompson’s Conjecture is the same as that of Ore’s Conjecture.

The fact that every element in the alternating group on five or more letters is
a commutator seems to be one of the most rediscovered and republished results in
this area. As already mentioned in the introduction, G. A. Miller [54] proved this
result in 1899. Ito [37] published it simultaneously with Ore in 1951. Yet another
proof can be found in [73]. Hsü (Xu) in [75] proved Thompson’s Conjecture for the
alternating groups.

There are some early results for certain sporadic simple groups, for example, the
Ore conjecture is verified for the Mathieu groups in [73]. As announced in [55],
Neubüser et al. verified Thompson’s (and consequently Ore’s) Conjecture for all
sporadic simple groups using computer aided calculations. A year after [55], the
Ore Conjecture was verified in [1] for the sporadic groups using classical methods.

This leaves the finite simple groups of Lie type to be discussed. In our account
we use the notation found in [21]. This differs slightly from the one used in [13]
with regards to norming of the parameter q. This difference is only an issue when
we have to identify cases for which Ore’s Conjecture is open. Fortunately, for those
families where the notations differ, there are no open cases and so we do not have
to address this issue.

R.C. Thompson in [69], [70], and [71] proves Ore’s Conjecture for the entire
family An(q), n ≥ 1. Tseng and Hsü in [72] do the same for the Suzuki groups,
that is the entire class 2B2(q), q = 22m+1.

There are various partial solutions of the Thompson Conjecture for some families
of finite simple groups that have since been overridden by more general results in
[13]. In a recent paper Gow derives sufficient conditions in terms of character theory
that a simple group of Lie type must satisfy so that the Ore conjecture holds [22].
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We should mention here that with the help of computer calculations Karni verified
Thompson’s Conjecture for all finite simple groups of order less than 106 [1].

In his dissertation Bonten [3] proves the following interesting result, which gives
an asymptotic solution to Ore’s Conjecture: Let G(q) = Xn(q), lXn(q) be a series
of groups of Lie type. Then there exists a constant q0, depending on n and l, such
that every element in G(q) is a commutator if q > q0. In [3] only the existence
of such numbers q0 is proved, but the methods allowed Bonten to calculate an
estimate for q0 in some cases. These were good enough for groups of small Lie
rank so that, together with computer calculations for small q, Bonten was able to
prove Ore’s Conjecture for the following families of finite simple groups of Lie type:
G2(q), 2G2(q), 3D4(q), F4(q) and 2F4(q).

The most far reaching results on Ore’s Conjecture to date were obtained by
Ellers and Gordeev in [13]. They prove Thompson’s Conjecture for all finite simple
groups of Lie type over fields with more than 8 elements. In fact, the result is
somewhat stronger than this, since for most of the families of these groups, field
sizes smaller than 8 suffice as the lower bound for establishing the validity of the
conjecture. The details can be found in Table 1, which gives the current status of
Ore’s Conjecture for finite simple groups of Lie type.

Name Verified cases References Open cases
An(q), n ≥ 1 all cases [69], [70], [71] none
B2(q) all cases [13], [1] none
Bn(q), n ≥ 3 q ≥ 7 [13] q = 2, 3, 4, 5
Cn(q), n > 2 q ≥ 4 [13] q = 2, 3
D2n(q), n ≥ 2 q ≥ 5 [13] q = 2, 3, 4
D2n+1(q), n ≥ 2 q ≥ 4 [13] q = 2, 3
G2(q) all cases [3] none
F4(q) all cases [3] none
E6(q) q ≥ 7 [13] q = 2, 3, 4, 5
E7(q) q ≥ 5 [13] q = 2, 3, 4
E8(q) q ≥ 7 [13] q = 2, 3, 4, 5
2A2l−1(q), l > 1 q ≥ 8 [13] q = 2, 3, 4, 5, 7
2A2l(q), l ≥ 1 q ≥ 4 [13] q = 2, 3
2B2(q), q = 22m+1 all cases [73] none
2Dn(q), n > 3 q ≥ 7 [13] q = 2, 3, 4, 5
3D4(q) all cases [3] none
2G2(q) all cases [3] none
2F4(q) all cases [3] none
2E6(q) q ≥ 8 [13] q = 2, 3, 4, 5, 7

Table 1. Status of Ore’s Conjecture for finite simple groups of Lie Type
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