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Abstract

In the standard arrovian framework and under the assumption that individual preferences and
social outcomes are linear orders on the set of alternatives, we suppose that individuals and
alternatives have been exogenously partitioned into subcommittees and subclasses, and we
study the rules that satisfy suitable symmetries and obey the majority principle. In particular,
we provide necessary and sufficient conditions for the existence of reversal symmetric majority
rules that are anonymous and neutral with respect to the considered partitions. We also
determine a general method for constructing and counting those rules and we explicitly apply
it to some simple cases.

Keywords: Social welfare function; anonymity; neutrality; reversal symmetry; majority; group
theory.
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1 Introduction

Committees are often required to provide a strict ranking of a given family of alternatives. There
are many procedures that members of a committee can conceive to aggregate their preferences on
alternatives into a strict ranking of these alternatives. Among them the ones satisfying the principles
of anonymity and neutrality are usually preferred. The principle of anonymity is the requirement
that the identities of individuals are irrelevant to determine the social outcome. The principle of
neutrality is instead the requirement that alternatives are equally treated. Unfortunately, despite
their appeal, these principles can both be satisfied by an aggregation procedure only in very special
circumstances.

∗We are grateful to two anonymous referees and an anonymous associate editor for providing useful suggestions
for improving the readability of the paper. In particular, one of the referees suggested an interesting link between
the minimal majority principle and the method of simple majority decision (see Proposition 1 and the final remark
in Section 7.1). Daniela Bubboloni was supported by INdAM.
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Consider a committee having h ≥ 2 members whose purpose is to strict rank n ≥ 2 alternatives,
and assume that individual and social preferences are strict rankings on the set of alternatives. A
preference profile is a list of h strict rankings each of them associated with the name of a specific
individual and representing her preferences. Any function from the set of preference profiles to the
set of social preferences is called a rule and represents a particular decision process which determines
a social ranking of alternatives, whatever individual preferences the committee members express.
In such a framework, Bubboloni and Gori (2014, Theorem 5) prove that it is possible to design
anonymous and neutral rules if and only if

gcd(h, n!) = 1. (1)

Condition (1), first introduced by Moulin (1983, Theorem 1, p.25) as a necessary and sufficient
condition for the existence of anonymous, neutral and efficient social choice functions, is a very
strong arithmetical condition rarely satisfied in concrete situations. When it fails we can only try
to design rules satisfying weaker versions of the principles of anonymity and neutrality.

A possible way to weaken anonymity is to divide individuals into subcommittees and require
that, within each subcommittee, individuals equally influence the final collective decision, while
individuals belonging to different subcommittees may have a different decision power. Analogously,
we can weaken neutrality by dividing alternatives into subclasses and assuming that within each
subclass alternatives are equally treated, while allowing alternatives belonging to different subclasses
to be treated differently. These versions of anonymity and neutrality are certainly natural and
actually used in many practical collective decision processes. That happens, for instance, when a
committee has a president working as a tie-breaker or when a committee evaluates job candidates
discriminating on their gender. Indeed, in the former example committee members can be thought
to be divided in two subcommittees (the president in the first, all the others in the second) with
anonymous individuals within each of them; in the latter example alternatives can be thought to be
divided in two subclasses (the women in the first, the men in the second) such that no alternative
has an exogenous advantage with respect to the other alternatives in the same subclass.

The formalization of those new concepts is natural. In fact, given a partition of individuals
into subcommittees, we say that a rule is anonymous with respect to those subcommittees if it
has the same value over any pair of preference profiles such that we can get one from the other by
permuting the names of individuals belonging to the same subcommittee. Given instead a partition
of alternatives into subclasses, we say that a rule is neutral with respect to those subclasses if, for
every pair of preference profiles such that we can get one from the other by permuting the names of
alternatives belonging to the same subclass, the social preferences associated with them coincide up
to the considered permutation. Of course, requiring that a rule is anonymous (neutral) is equivalent
both to requiring that it is anonymous (neutral) with respect to the partition whose unique element
is the whole set of individuals (alternatives), and to requiring that it is anonymous (neutral) with
respect to any partition of individuals (alternatives).

Certainly, beyond anonymity and neutrality, social choice theorists identify further principles
that rules should meet. The majority and the reversal symmetry principles are some of them.
Roughly speaking, the majority principle requires that if a large enough amount of people prefer
an alternative to another one, then the former alternative must be socially preferred to the latter
one. In the literature we can find several ways to interpret that principle, such as relative majority,
absolute majority, qualified majority and so on; here we focus on the minimal majority principle
introduced by Bubboloni and Gori (2014). Given an integer ν, called a majority threshold, not
exceeding the number of members in the committee but exceeding half of it and a preference
profile, we say that a social preference is consistent with the ν-majority principle applied to the
considered preference profile if the fact that an alternative is preferred to another one by at least
ν individuals implies that the alternative is socially ranked over the other one. A rule is said to
be a minimal majority rule if it associates with every preference profile p a social preference which
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is consistent with the ν-majority principle applied to p for all majority thresholds ν that do not
generate Condorcet-cycles for p. The principle of reversal symmetry states instead that if everybody
in the society completely changes her mind about her own ranking of alternatives, then a complete
change in the social outcome occurs. It can be formally described by recalling first that, given a
preference, its reversal is the preference obtained making the best alternative the worst, the second
best alternative the second worst, and so on. A rule is then reversal symmetric if, for any pair of
preference profiles such that one is obtained by the other reversing each individual preference, the
social outcomes associated with them are one the reversal of the other.

In the present paper we analyse the rules that satisfy anonymity with respect to subcommittees
and neutrality with respect to subclasses, and also obey the principles of minimal majority and
reversal symmetry. At the best of our knowledge, conditions assuring the existence of those rules
are not known. Some contributions related to different notions of anonymity and neutrality and
their link with the majority principle are instead present in the literature. Under the assumption
that there are two alternatives and assuming the possibility of indifference in individual and social
preferences, Perry and Powers (2008) calculate the number of rules that satisfy anonymity and
neutrality and the number of rules satisfying a restrictive version of anonymity (that is, every
individual but one is anonymous) and neutrality. In the same framework, Powers (2010) further
shows that an aggregation rule satisfies that restrictive version of anonymity, neutrality and Maskin
monotonicity if and only if it is close to an absolute qualified majority rule. Quesada (2013) identifies
instead seven axioms (among which are weak versions of anonymity and neutrality) characterizing
the rules that are either the relative majority rule or the relative majority rule where a given
individual, the chairman, can break the ties. In the framework of social choice functions, Campbell
and Kelly (2011, 2013) show that the relative majority is implied both by a suitable weak version of
anonymity, neutrality and monotonicity, as well as by what they called limited neutrality, anonymity
and monotonicity. Moreover, in the general case for the number of alternatives, some observations
about different levels of anonymity and neutrality can be found in the paper by Kelly (1991), who
uses the language of permutations groups to discuss some open problems.

Here we follow the algebraic approach developed in Bubboloni and Gori (2014) to carry on our
analysis, and we also adhere to the framework and notation used there. In that paper, which we
refer to for further references on anonymity, neutrality and majority principles, the authors show
how the notion of action of a group on a set can naturally and fruitfully be used to study problems
concerning anonymity and neutrality. Indeed, among other things, they prove that condition (1) is
necessary and sufficient for the existence of anonymous and neutral minimal majority rule.1 In this
paper we adapt that algebraic reasoning in order to treat anonymity with respect to subcommittees
and neutrality with respect to subclasses, together with reversal symmetry and minimal majority.
We obtain, as our main result, the following theorem.2

Theorem A. Assume that individuals are partitioned into s ≥ 1 subcommittees with number of
members b1, . . . , bs, and that alternatives are partitioned into t ≥ 1 subclasses with number of
alternatives c1, . . . , ct. Then:

i) there exists a minimal majority rule that is anonymous with respect to the considered subcom-
mittees and neutral with respect to the considered subclasses if and only if

gcd
(

gcd(b1, . . . , bs), lcm(c1!, . . . , ct!)
)

= 1; (2)

ii) there exists a minimal majority rule that is anonymous with respect to the considered subcom-
mittees, neutral with respect to the considered subclasses and reversal symmetric if and only
if

gcd
(

gcd(b1, . . . , bs), lcm(2, c1!, . . . , ct!)
)

= 1. (3)

1See Theorem 14 in Bubboloni and Gori (2014).
2Theorem A is a rephrasing of Theorem 15.
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Note that (3) obviously implies (2), and that (2) and (3) are equivalent if one among the c1, . . . , ct
is greater than 1. Since (1) implies (3), Theorem A generalizes many results proved in Bubboloni
and Gori (2014). In particular, condition (1) is sufficient not only to get anonymous and neutral
minimal majority rules, but also to get rules having the further property of being reversal symmetric
(Corollary 18). Yet, Theorem A goes much beyond that. Indeed, it shows that if (1) does not hold
true but the specific purpose of the collective choice naturally allows partitions of the individuals
and the alternatives into subcommittees and subclasses satisfying (3), then it is possible to design
a minimal majority rule that is anonymous and neutral with respect to those partitions as well as
reversal symmetric. That happens, as a special but remarkable case, when all the members of a
committee but one are anonymous (for instance, the committee has a president), independently of
the partition of alternatives in subclasses (Corollary 16).

We finally want to emphasize that our algebraic approach actually allows us to define a very
general and wide-ranging notion of symmetry for rules (Section 2.4), which includes anonymity with
respect to subcommittees, neutrality with respect to subclasses and reversal symmetry as particular
instances. That notion of symmetry provides a fruitful unified framework with a double advantage:
arguments and proofs becomes simpler and more direct; the results reach a very satisfying level
of generality (Theorems 7 and 11). Moreover, as in Bubboloni and Gori (2014), the algebraic
machinery provides a method to potentially build all the rules described in Theorem A. In Section
7 we briefly discuss some examples that explain how the theoretical results can be explicitly applied
in some simple cases.

2 Definitions and notation

2.1 Linear orders and permutations

Let X be a nonempty finite set. We denote by R(X) the set of relations on X. Given R ∈ R(X)
and x, y ∈ X, we sometimes write x ≥R y instead of (x, y) ∈ R, as well as x >R y instead of
(x, y) ∈ R and (y, x) 6∈ R. If R ∈ R(X) is antisymmetric, then x >R y is equivalent to x ≥R y and
x 6= y. A relation on X is called a linear order on X if it is complete, transitive and antisymmetric.
The set of linear orders on X is denoted by L(X). If R1, R2 ∈ L(X), then R1 = R2 if and only if,
for every x, y ∈ X, x >R1

y implies x >R2
y.

We denote by Sym(X) the group of the bijective functions from X to itself, with product given
by the right-to-left composition, that is, if f1, f2 ∈ Sym(X), then f1f2 ∈ Sym(X) is the function
such that, for every x ∈ X, f1f2(x) = f1(f2(x)). The neutral element of Sym(X) is given by the
identity function id. Sym(X) is called the symmetric group3 on X and its elements permutations
on X. Given σ ∈ Sym(X), we denote its order by |σ|. For every k ∈ N, the group Sym({1, . . . , k})
is simply denoted by Sk.

2.2 Preference relations

From now on, let n ∈ N with n ≥ 2 be fixed, and let N = {1, . . . , n} be the set of alternatives. A
preference relation on N is an element of L(N). Throughout the section, let q ∈ L(N) be fixed.
For every x, y ∈ N , we say that x is preferred to y according to q if x >q y. For every ψ ∈ Sn,
we define ψq as the element of L(N) such that, for every x, y ∈ N , (x, y) ∈ ψq if and only if
(ψ−1(x), ψ−1(y)) ∈ q. Consider the order reversing permutation in Sn, that is, the permutation
ρ0 ∈ Sn defined, for every r ∈ {1, . . . , n}, as ρ0(r) = n − r + 1. Note that |ρ0| = 2. We define
qρ0 ∈ L(N) as the element in L(N) such that, for every x, y ∈ N , (x, y) ∈ qρ0 if and only if

3The notation and results of group theory about permutation groups and actions, not explicitly discussed in the
paper, are standard (see, for instance, Wielandt (1964) and Rose (1978)).
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(y, x) ∈ q. We also define q id = q, where id ∈ Sn. By definition, for every x, y ∈ N and ψ ∈ Sn,
we have that

x >q y if and only if ψ(x) >ψq ψ(y), (4)

and
x >q y if and only if y >qρ0 x. (5)

Consider now the set of vectors with n distinct components in N given by

V(N) = {(xr)nr=1 ∈ Nn : xr1 = xr2 ⇒ r1 = r2} ,

and think each vector (xr)
n
r=1 ∈ V(N) as a column vector, that is,

(xr)
n
r=1 =

x1

...
xn

 = [x1, . . . , xn]T .

The function f1 : V(N)→ L(N) associating with (xr)
n
r=1 ∈ V(N) the preference relation

{(xr1 , xr2) ∈ N ×N : r1, r2 ∈ {1, . . . , n}, r1 ≤ r2},

and the function f2 : Sn → L(N) associating with σ ∈ Sn the preference relation

{(σ(r1), σ(r2)) ∈ N ×N : r1, r2 ∈ {1, . . . , n}, r1 ≤ r2}

are bijective, so that, in particular, |Sn| = |V(N)| = |L(N)| = n!. We say that x ∈ N has rank
r ∈ {1, . . . , n} in q if x is the r-th component of f−1

1 (q) or, equivalently, if x is the image of r
through f−1

2 (q). Note now that, for every ψ ∈ Sn and ρ ∈ {id, ρ0}, if f−1
1 (q) = [x1, . . . , xn]T , then

f−1
1 (ψq) = [ψ(x1), . . . , ψ(xn)]T , and f−1

1 (qρ) = [xρ(1), . . . , xρ(n)]
T ;

if f−1
2 (q) = σ, then

f−1
2 (ψq) = ψσ, and f−1

2 (qρ) = σρ.

Thus, by the functions f1 and f2 we are allowed to identify the preference relation q both with the
vector f−1

1 (q) and with the permutation f−1
2 (q), and to naturally interpret the products ψq and qρ

in V(N) and in Sn. For instance, if n = 4 and

q = {(4, 2), (2, 1), (1, 3), (4, 1), (4, 3), (2, 3), (4, 4), (2, 2), (1, 1), (3, 3)} ∈ L({1, 2, 3, 4}),

then q is identified with both f−1
1 (q) = [4, 2, 1, 3]T ∈ V({1, 2, 3, 4}) and f−1

2 (q) = (143) ∈ S4, so
that 4 has rank 1, 2 has rank 2, 1 has rank 3, and 3 has rank 4 in q. Moreover, if ψ = (342) ∈ S4,
then we can write

ψq = (342)[4, 2, 1, 3]T = [2, 3, 1, 4]T and qρ0 = [4, 2, 1, 3]T (14)(23) = [3, 1, 2, 4]T ,

as well as
ψq = (342)(143) = (123) and qρ0 = (143)(14)(23) = (132).

Thus, identifying preference relations with vectors makes computations easy and intuitive. On
the other hand, identifying preference relations with permutations allows to transfer the group
properties of Sn to the products between preference relations and permutations. In particular, by
associativity and cancellation laws, for every ψ1, ψ2 ∈ Sn and ρ1, ρ2 ∈ {id, ρ0}, we have that ψ1q =
ψ2q if and only if ψ1 = ψ2; qρ1 = qρ2 if and only if ρ1 = ρ2; (ψ2ψ1)q = ψ2(ψ1q); q(ρ1ρ2) = (qρ1)ρ2;
(ψ1q)ρ1 = ψ1(qρ1).
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Given now ψ ∈ Sn and ρ ∈ {id, ρ0}, we finally emphasize that the above discussion makes the
products ψq and qρ have interesting interpretations. Indeed, if q represents the preferences of a
certain individual, then ψq represents the preferences that the individual would have if, for every
x ∈ N , alternative x were called ψ(x); qρ represents the preferences that the individual would have
if, for every r ∈ {1, . . . , n}, the alternative whose rank is r is moved to rank ρ(r). As a consequence,
even though both ψ and ρ belong to Sn they have different meanings. Indeed, ψ maps alternatives
to alternatives, while ρ maps ranks to ranks. Moreover, looking at q as a permutation, we have
that q maps ranks to alternatives. In particular, the set {1, . . . , n} sometimes refers to the set of
alternatives, sometimes to the set of ranks. Although the context always allows to understand the
right interpretation, along the paper we denote that set by N in the first case, and by {1, . . . , n} in
the second one.

2.3 Preference profiles

From now on, let h ∈ N with h ≥ 2 be fixed, and let H = {1, . . . , h} be the set of individuals. A
preference profile is an element of L(N)h. The set L(N)h is denoted by P. If p ∈ P and i ∈ H,
the i-th component of p is denoted by pi and represents the preferences of individual i. Any p ∈ P
can be identified with the matrix whose i-th column is the column vector representing the i-th
component of p.

Let us consider the groups Ω = {id, ρ0} ≤ Sn and G = Sh × Sn × Ω. For every (ϕ,ψ, ρ) ∈ G
and p ∈ P, define p(ϕ,ψ,ρ) ∈ P as the preference profile such that, for every i ∈ H,(

p(ϕ,ψ,ρ)
)
i

= ψpϕ−1(i)ρ. (6)

Since we have given no meaning to (pi)
(ϕ,ψ,ρ) for a single preference relation pi ∈ L(N), we will

write the i-th component p(ϕ,ψ,ρ) simply as p
(ϕ,ψ,ρ)
i , instead of

(
p(ϕ,ψ,ρ)

)
i
.

The preference profile p(ϕ,ψ,ρ) is then obtained by p according to the following rules: for every
i ∈ H, individual i is renamed ϕ(i); for every x ∈ N , alternative x is renamed ψ(x); for every
r ∈ {1, . . . , n}, alternatives whose rank is r are moved to rank ρ(r). For instance, if n = 3, h = 5
and

p =

 3 1 2 3 2
2 2 1 2 3
1 3 3 1 1

 , ϕ = (134)(25), ψ = (12), ρ = ρ0 = (13),

then we have

p(ϕ,id,id) =

 3 2 3 2 1
2 3 2 1 2
1 1 1 3 3

 , p(id,ψ,id) =

 3 2 1 3 1
1 1 2 1 3
2 3 3 2 2

 ,

p(id,id,ρ0) =

 1 3 3 1 1
2 2 1 2 3
3 1 2 3 2

 , p(ϕ,ψ,ρ0) =

 2 2 2 3 3
1 3 1 2 1
3 1 3 1 2

 .
As it is easy to verify, if n = 2, then p(id,ρ0,id) = p(id,id,ρ0) for all p ∈ P; if n ≥ 3, then there do
not exist ϕ ∈ Sh and ψ ∈ Sn such that, for every p ∈ P, p(ϕ,ψ,id) = p(id,id,ρ0). In other words,
top-down reversing preference profiles cannot be reduced, in general, to a change in individuals and
alternatives names.
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2.4 Symmetric minimal majority rules

A rule (or social welfare function) is a function from P to L(N). Given a subgroup U of G, we say
that a rule F is U -symmetric if, for every p ∈ P and (ϕ,ψ, ρ) ∈ U ,

F (p(ϕ,ψ,ρ)) = ψF (p)ρ.

The set of U -symmetric rules is denoted by FU . Note that if U ′ ≤ U , then FU ⊆ FU ′ .
The concept of symmetry with respect to a subgroup U of G includes some classical requirements

for rules. For instance, a rule F is anonymous if and only if F ∈ FSh×{id}×{id}; it is neutral if
and only if F ∈ F{id}×Sn×{id}; it is reversal symmetric if and only if F ∈ F{id}×{id}×Ω. Moreover,
as explained in Sections 3 and 6, any combination of the principles of anonymity, neutrality (even
in their weak versions involving subcommittees and subclasses) and reversal symmetry can also
be described in terms of U -symmetry for a suitable choice of the subgroup U . Thus, we decided
to work first in the abstract and unifying setting of U -symmetric rules (Sections 3, 4 and 5), and
rephrase later the results obtained in more specific but better interpretable contexts (Sections 6
and 7).

Given ν ∈ N ∩ (h/2, h], define, for every p ∈ P, the set

Cν(p) = {q ∈ L(N) : ∀x, y ∈ N, |{i ∈ H : x >pi y}| ≥ ν ⇒ x >q y} ,

that is, the set of preference relations having x ∈ N preferred to y ∈ N whenever, according to
the preference profile p, at least ν individuals prefer x to y. In other words, we have that Cν(p)
is the set of linear orders that are consistent with the principle of qualified majority with majority
threshold equal to ν (briefly ν-majority) applied to the preference profile p. For example, consider
h = 9, n = 3 (so that H = {1, . . . , 9} and N = {1, 2, 3}) and the preference profile

p =

 1 1 2 2 2 3 3 3 3
2 2 1 3 3 1 1 1 2
3 3 3 1 1 2 2 2 1

 . (7)

A simple check shows that

|{i ∈ H : 1 >pi 2}| = 5, |{i ∈ H : 1 >pi 3}| = 3, |{i ∈ H : 2 >pi 3}| = 5,

|{i ∈ H : 2 >pi 1}| = 4, |{i ∈ H : 3 >pi 1}| = 6, |{i ∈ H : 3 >pi 2}| = 4.

It is now immediate to compute, for every majority threshold ν ∈ N ∩ (h2 , h] = {5, 6, 7, 8, 9}, the
set Cν(p). Indeed, C5(p) is the set of linear orders such that 1 is ranked above 2, 2 above 3, and
3 above 1, that is, C5(p) = ∅; C6(p) is the set of linear orders such that 3 is ranked above 1,
that is, C6(p) = {[3, 1, 2]T , [3, 2, 1]T , [2, 3, 1]T }; C7(p) = C8(p) = C9(p) = L(N) because, for every
ν ∈ {7, 8, 9} and x, y ∈ N , we have |{i ∈ H : x >pi y}| < ν, that is, the ν-majority principle applied
to p does not generate any constraint.

Of course, if ν, ν′ ∈ N ∩ (h/2, h] with ν ≤ ν′, then we have Cν(p) ⊆ Cν′(p) for all p ∈ P. It is
also known that4 Cν(p) 6= ∅ for all p ∈ P if and only if ν > n−1

n h. For every p ∈ P, define now

ν(p) = min{ν ∈ N ∩ (h/2, h] : Cν(p) 6= ∅},

and note that ν(p) is well defined as, for every p ∈ P, Ch(p) 6= ∅. A rule F is said to be a
minimal majority rule if, for every p ∈ P, F (p) ∈ Cν(p)(p). For instance, the preference profile
p defined in (7) is such that ν(p) = 6, so that if F is a minimal majority rule, then we have
F (p) ∈ Cν(p)(p) = C6(p). We denote the set of minimal majority rules by Fmin. Of course, the set
Fmin is nonempty by definition.

4See, for instance, Propositions 6 and 7 in Bubboloni and Gori (2014).
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The next proposition exhibits an interesting connection between minimal majority rules and the
well-known method of simple majority decision, that is, the function S : P → R(N) defined, for
every p ∈ P, as

S(p) =
{

(x, y) ∈ N2 : |{i ∈ H : x ≥pi y}| ≥ h/2
}
. (8)

Recall that the image of S is contained in the set of complete relations on N but, except for h odd
and n = 2, it is not contained in L(N).

Proposition 1. Let F be a minimal majority rule and p ∈ P. Then F (p) = S(p) if and only if
S(p) ∈ L(N).

Proof. The fact that F (p) = S(p) implies S(p) ∈ L(N) is obvious. Assume now that S(p) ∈
L(N) and prove that F (p) = S(p) showing that Cν(p)(p) = {S(p)}. Let ν∗ = min{ν ∈ N : ν >

h/2} =
⌊
h+1

2

⌋
. Since ν(p) ≥ ν∗, it is enough to show that Cν∗(p) = {S(p)}. Observe first that

S(p) ∈ Cν∗(p). Indeed, let x, y ∈ N such that |{i ∈ H : x >pi y}| ≥ ν∗, then x 6= y and
|{i ∈ H : x >pi y}| > h/2, so that x >S(p) y. In order to show that q ∈ Cν∗(p) implies q = S(p),
it is enough to prove that, for every x, y ∈ N , x >S(p) y implies x >q y. Let x, y ∈ N such that
x >S(p) y. Thus, x 6= y and |{i ∈ H : x ≥pi y}| ≥ h/2. Since x 6= y and pi ∈ L(N) for all i ∈ H, we
get |{i ∈ H : x >pi y}| ≥ h/2. However, we cannot have |{i ∈ H : x >pi y}| = h/2, since otherwise
we should also have (y, x) ∈ S(p), against x >S(p) y. Thus, |{i ∈ H : x >pi y}| > h/2, so that
|{i ∈ H : x >pi y}| ≥ ν∗. As a consequence, we have that x >q y.

Let us finally define, for every U ≤ G, the set FUmin = FU ∩ Fmin of the U -symmetric minimal
majority rules. We are going to study under which conditions on the subgroup U the sets FU and
FUmin are nonempty. Indeed, after having introduced in Section 3 some fundamental algebraic tools,
in Section 4 we find out a condition on U , called regularity, that is equivalent to both FU 6= ∅ and
FUmin 6= ∅ (Theorems 7 and 11).

3 Actions on the set of preference profiles

The next proposition, which generalizes Proposition 1 in Bubboloni and Gori (2014), shows that
any subgroup U of G naturally acts on the set of preference profiles P. That result is rich of
consequences as it allows to exploit many general facts from group theory.

Proposition 2. Let U ≤ G. Then:

i) for every p ∈ P and (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U , we have

p (ϕ1ϕ2,ψ1ψ2,ρ1ρ2) =
(
p (ϕ2,ψ2,ρ2)

)(ϕ1,ψ1,ρ1)

; (9)

ii) the function f : U → Sym(P) defined, for every (ϕ,ψ, ρ) ∈ U , as

f(ϕ,ψ, ρ) : P → P, p 7→ p(ϕ,ψ,ρ),

is well defined and it is an action of the group U on the set P.

Proof. i) Fix p ∈ P and (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U . For every i ∈ H, by (6), we have

p
(ϕ1ϕ2,ψ1ψ2,ρ1ρ2)
i = ψ1ψ2p(ϕ1ϕ2)−1(i)ρ1ρ2,

and also, recalling that Ω is abelian,(
p (ϕ2,ψ2,ρ2)

)(ϕ1,ψ1,ρ1)

i
= ψ1

(
p (ϕ2,ψ2,ρ2)

)
ϕ−1

1 (i)
ρ1 = ψ1ψ2pϕ−1

2 (ϕ−1
1 (i))ρ2ρ1 = ψ1ψ2p(ϕ1ϕ2)−1(i)ρ1ρ2.
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ii) Fix (ϕ,ψ, ρ) ∈ U and prove that f(ϕ,ψ, ρ) ∈ Sym(P). Since P is finite, it is enough to show
that f(ϕ,ψ, ρ) is surjective. Consider then p ∈ P and simply observe that, by (6) and (9),

f(ϕ,ψ, ρ)
(
p (ϕ−1,ψ−1,ρ−1)

)
=
(
p (ϕ−1,ψ−1,ρ−1)

)(ϕ,ψ,ρ)

= p(id,id,id) = p.

Since by (9) we also have that, for every (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U ,

f((ϕ1, ψ1, ρ1)(ϕ2, ψ2, ρ2)) = f(ϕ1, ψ1, ρ1)f(ϕ2, ψ2, ρ2), (10)

we get that f is an action of U on P.

Thanks to the fact that the function f defined in Proposition 2 is an action, we can use in
our context notation and results concerning the action of a group on a set. For every p ∈ P, the
set {pg ∈ P : g ∈ U} is called the U -orbit of p and is denoted by pU . It is well known that
the set PU = {pU : p ∈ P} of the U -orbits is a partition5 of P. We denote the order of PU

by R(U). Any vector (pj)
R(U)
j=1 ∈ PR(U) such that PU = {pj U : j ∈ {1, . . . , R(U)}}, is called a

system of representatives of the U -orbits. The set of the systems of representatives of the U -orbits
is nonempty and denoted by S(U). For every p ∈ P, the stabilizer of p in U is the subgroup of U
defined by

StabU (p) = {g ∈ U : pg = p},

and it is well known that

|pU | = |U |
|StabU (p)|

. (11)

From Proposition 2, we gain the following simple but expressive result.

Proposition 3. Let U, V ≤ G. Then FU ∩ FV = F 〈U,V 〉.

Proof. Since 〈U, V 〉 contains both U and V , we get F 〈U,V 〉 ⊆ FU ∩FV . Let us now fix F ∈ FU ∩FV
and prove F ∈ F 〈U,V 〉. Note first that by the definition of generated subgroup, for every g ∈ 〈U, V 〉,
there exists k ∈ N and g1, . . . , gk ∈ U∪V such that g = g1 · · · gk. Let us define then, for every k ∈ N,
the set 〈U, V 〉k of the elements in 〈U, V 〉 that can be written as product of k elements of U ∪ V .
Then, we obtain F ∈ F 〈U,V 〉 showing that, for every k ∈ N, p ∈ P and g = (ϕ,ψ, ρ) ∈ 〈U, V 〉k, we
have F (p(ϕ,ψ,ρ)) = ψF (p)ρ. That can be easily proved by induction on k using (9) and recalling
that Ω is abelian.

Proposition 3 has interesting consequences. For instance, it implies that if F is a rule, then F
is anonymous and neutral if and only if F ∈ FSh×Sn×{id}; F is anonymous and reversal symmetric
if and only if F ∈ FSh×{id}×Ω; F is neutral and reversal symmetric if and only if F ∈ F{id}×Sn×Ω;
F is anonymous, neutral and reversal symmetric if and only if F ∈ FG.

4 Existence results

In this section we study under which conditions on U the sets FU and FUmin are nonempty. Through-
out the section, U is a fixed subgroup of G.

5A partition of a nonempty set X is a set of nonempty pairwise disjoint subsets of X whose union is X.
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4.1 U-symmetric rules

For every p ∈ P, define the set

SU1 (p) = {q ∈ L(N) : ∀(ϕ,ψ, ρ) ∈ StabU (p), ψqρ = q} .

Lemma 4. Let F ∈ FU . Then, for every p ∈ P, F (p) ∈ SU1 (p).

Proof. Let p ∈ P and (ϕ,ψ, ρ) ∈ StabU (p). Then p = p(ϕ,ψ,ρ) and so F (p) = F (p(ϕ,ψ,ρ)) = ψF (p)ρ,
which says F (p) ∈ SU1 (p).

Proposition 5. For every (pj)
R(U)
j=1 ∈ S(U) and (qj)

R(U)
j=1 ∈ ×R(U)

j=1 SU1 (pj), there exists a unique

F ∈ FU such that, for every j ∈ {1, . . . , R(U)}, F (pj) = qj.

Proof. Let (pj)
R(U)
j=1 ∈ S(U), (qj)

R(U)
j=1 ∈ ×R(U)

j=1 SU1 (pj) and set J = {1, . . . , R(U)}. Since {pj U :
j ∈ J} is a partition of P, given p ∈ P, there exist a unique j ∈ J and (ϕ,ψ, ρ) ∈ U such that
p = pj (ϕ,ψ,ρ). Note that, if for some j ∈ J there exist (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U such that
pj (ϕ1,ψ1,ρ1) = pj (ϕ2,ψ2,ρ2), then ψ1qjρ1 = ψ2qjρ2. Indeed, by (9), we have that pj (ϕ1,ψ1,ρ1) =
pj (ϕ2,ψ2,ρ2) implies (ϕ−1

2 ϕ1, ψ
−1
2 ψ1, ρ

−1
2 ρ1) ∈ StabU (pj). Since qj ∈ SU1 (pj) and Ω is abelian, we

have that qj = ψ−1
2 ψ1qjρ

−1
2 ρ1 = ψ−1

2 ψ1qjρ1ρ
−1
2 , and thus ψ1qjρ1 = ψ2qjρ2.

As a consequence, the rule F defined, for every p ∈ P, as F (p) = ψqjρ, where j ∈ J and
(ϕ,ψ, ρ) ∈ U are such that p = pj (ϕ,ψ,ρ), is well defined. Moreover, for every j ∈ J , F (pj) = qj .
Let us prove that F ∈ FU . Consider p ∈ P and (ϕ,ψ, ρ) ∈ U and let p = pj (ϕ1,ψ1,ρ1) for some
j ∈ J and (ϕ1, ψ1, ρ1) ∈ U . By the definition of F and by (9), we conclude that

F (p(ϕ,ψ,ρ)) = F

((
pj (ϕ1,ψ1,ρ1)

)(ϕ,ψ,ρ)
)

= F (pj (ϕϕ1,ψψ1,ρρ1)) = (ψψ1)qj(ρρ1)

= (ψψ1)qj(ρ1ρ) = ψ(ψ1qjρ1)ρ = ψF (pj (ϕ1,ψ1,ρ1))ρ = ψF (p)ρ.

In order to prove the uniqueness of F , it suffices to note that if F ′ ∈ FU is such that, for every
j ∈ J , F ′(pj) = qj , then F ′(pj (ϕ,ψ,ρ)) = ψqjρ = F (pj (ϕ,ψ,ρ)) for all j ∈ J and (ϕ,ψ, ρ) ∈ U . Thus,
for every p ∈ P, F ′(p) = F (p).

Given (pj)
R(U)
j=1 ∈ S(U) and (qj)

R(U)
j=1 ∈ ×R(U)

j=1 SU1 (pj), denote by F
[
(pj)

R(U)
j=1 , (qj)

R(U)
j=1

]
the

unique F ∈ FU such that, for every j ∈ {1, . . . , R(U)}, F (pj) = qj . The next result, which is an
immediate consequence of Lemma 4 and Proposition 5, provides a formula to count the elements
in FU , when a system of representatives is known. That formula is important under a theoretical
perspective (see, for instance, the proof of Theorem 7) but it can also be useful in practical situations
as shown in Section 7.

Proposition 6. Let (pj)
R(U)
j=1 ∈ S(U). Then the function

f : ×R(U)
j=1 SU1 (pj)→ FU , f

(
(qj)

R(U)
j=1

)
= F

[
(pj)

R(U)
j=1 , (qj)

R(U)
j=1

]
(12)

is bijective. In particular, |FU | =
∏R(U)
j=1 |SU1 (pj)|.

Let us introduce now a crucial definition. A subgroup U of G is said to be regular if, for every
p ∈ P,

there exists ψ∗ ∈ Sn conjugate to ρ0 such that

StabU (p) ⊆ (Sh × {id} × {id}) ∪ (Sh × {ψ∗} × {ρ0}) .
(13)

Note that, within our notation, two permutations σ1, σ2 ∈ Sn are conjugate if there exists u ∈ Sn
such that σ1 = uσ2u

−1. If U is regular and W ≤ U , then W is regular too, because StabW (p) =
W ∩ StabU (p). In particular, G is regular if and only if each subgroup of G is regular. The next
theorem shows the deep impact of the concept of regular subgroup in our research.
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Theorem 7. FU 6= ∅ if and only if U is regular. Moreover, if U is regular, then
(
2b

n
2 cbn2 c!

)R(U)

divides |FU |.

Proof. Assume that FU 6= ∅ and pick F ∈ FU . Fix p ∈ P and define ψ∗ = F (p)ρ0F (p)−1.
Given (ϕ,ψ, ρ) ∈ StabU (p), let us prove that ρ = id implies ψ = id, and ρ = ρ0 implies ψ = ψ∗.
Observe that F (p) = F (p(ϕ,ψ,ρ)) = ψF (p)ρ. As a consequence, if ρ = id then we get F (p) = ψF (p)
and thus ψ = id; if ρ = ρ0 we get F (p) = ψF (p)ρ0 and thus, due to |ρ0| = 2, we find that
ψ = F (p)ρ0F (p)−1 = ψ∗.

Next assume that U is regular and fix p ∈ P. Let ψ∗ = uρ0u
−1, for a suitable u ∈ Sn, as in

(13). We show that

SU1 (p) =

{
L(N) if StabU (p) ≤ Sh × {id} × {id}

uCSn(ρ0) if StabU (p) 6≤ Sh × {id} × {id}.

The first fact is a trivial consequence of the definition of SU1 (p). Assume now that there exists
(ϕ∗, ψ∗, ρ0) ∈ StabU (p). By the regularity of U , the only elements of StabU (p) affecting SU1 (p) are
those belonging to Sh × {ψ∗} × {ρ0}, so that SU1 (p) = {q ∈ L(N) : ψ∗qρ0 = q}. However,

q ∈ SU1 (p) ⇔ ψ∗ = qρ0q
−1 ⇔ ρ0(u−1q) = (u−1q)ρ0

⇔ u−1q ∈ CSn(ρ0) ⇔ q ∈ uCSn(ρ0),

which means SU1 (p) = uCSn(ρ0).
Since |L(N)| = n! and it is well known that |CSn(ρ0)| = 2b

n
2 cbn2 c!, we also get

|SU1 (p)| =

{
n! if StabU (p) ≤ Sh × {id} × {id}

2b
n
2 cbn2 c! if StabU (p) 6≤ Sh × {id} × {id}.

Thus, by Proposition 6, |FU | ≥ 1. Moreover, since CSn(ρ0) ≤ Sn, we have that |CSn(ρ0)| divides

n! and then
(
2b

n
2 cbn2 c!

)R(U)
divides |FU |.

4.2 U-symmetric minimal majority rules

We start our study of FUmin with a preliminary lemma dealing with the behaviour of the set Cν(p)(p)
with respect to the action of U.

Lemma 8. Let ν ∈ N ∩ (h/2, h], p ∈ P and (ϕ,ψ, ρ) ∈ G. Then Cν(p(ϕ,ψ,ρ)) = ψCν(p)ρ,
ν(p(ϕ,ψ,ρ)) = ν(p) and Cν(p(ϕ,ψ,ρ))(p

(ϕ,ψ,ρ)) = ψCν(p)(p)ρ.

Proof. By Lemma 10 in Bubboloni and Gori (2014) we know that Cν(p(ϕ,ψ,id)) = ψCν(p) for all

p ∈ P and all (ϕ,ψ, id) ∈ G. Since, by (9), Cν(p(ϕ,ψ,ρ0)) = Cν(
(
p(ϕ,ψ,id)

)(id,id,ρ0)
), we can prove

the first part of the statement showing that, for every p ∈ P, we have

Cν(p(id,id,ρ0)) = Cν(p)ρ0.

However, due to p
(id,id,ρ0)
i = piρ0 and recalling that |ρ0| = 2, we immediately have

Cν(p(id,id,ρ0)) = {q ∈ L(N) : ∀x, y ∈ N, |{i ∈ H : x >piρ0 y}| ≥ ν ⇒ x >q y}

= {q ∈ L(N) : ∀x, y ∈ N, |{i ∈ H : y >pi x}| ≥ ν ⇒ y >qρ0 x}

= {q1ρ0 ∈ L(N) : ∀x, y ∈ N, |{i ∈ H : y >pi x}| ≥ ν ⇒ y >q1 x} = Cν(p)ρ0.

In order to complete the proof, note that |Cν(p(ϕ,ψ,ρ))| = |Cν(p)| and thus Cν(p(ϕ,ψ,ρ)) 6= ∅ if
and only if Cν(p) 6= ∅, that is, ν(p(ϕ,ψ,ρ)) = ν(p). It also follows that Cν(p(ϕ,ψ,ρ))(p

(ϕ,ψ,ρ)) =

Cν(p)(p
(ϕ,ψ,ρ)) = ψCν(p)(p)ρ.
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For every p ∈ P, define the set

SU2 (p) = SU1 (p) ∩ Cν(p)(p).

Lemma 9. Let F ∈ FUmin. Then, for every p ∈ P, F (p) ∈ SU2 (p).

Proof. Let p ∈ P. Since F ∈ FU , by Lemma 4, we know that F (p) ∈ SU1 (p). Moreover, as
F ∈ Fmin, we also have that F (p) ∈ Cν(p)(p). Thus F (p) ∈ SU2 (p).

Proposition 10 below is analogous to Proposition 6. We stress that it is a fundamental tool to
prove Theorem 11.

Proposition 10. Let (pj)
R(U)
j=1 ∈ S(U) and f defined as in (12). Then

f
(
×R(U)
j=1 SU2 (pj)

)
= FUmin.

In particular, |FUmin| =
∏R(U)
j=1 |SU2 (pj)|.

Proof. Set S = ×R(U)
j=1 SU2 (pj) and J = {1 . . . , R(U)}. In order to prove that f(S) ⊆ FUmin, let

(qj)
R(U)
j=1 ∈ S and prove that F = F

[
(pj)

R(U)
j=1 , (qj)

R(U)
j=1

]
∈ FUmin. By Proposition 6, we immediately

have that F ∈ FU . Consider now p ∈ P. Then there exist j ∈ J and (ϕ,ψ, ρ) ∈ U such that
p = pj (ϕ,ψ,ρ). As, for every j ∈ J , we know that qj = F (pj) ∈ Cν(pj)(p

j), by Lemma 8, we also
have

F (p) = ψqjρ ∈ ψCν(pj)(p
j)ρ = Cν(pj (ϕ,ψ,ρ))(p

j (ϕ,ψ,ρ)) = Cν(p)(p),

as desired.
In order to prove that FUmin ⊆ f(S), let F ∈ FUmin and define, for every j ∈ J , qj = F (pj). Then

by Lemma 9, we immediately have (qj)
R(U)
j=1 ∈ S and since F = f

(
(qj)

R(U)
j=1

)
we get F ∈ f(S).

The following theorem emphasizes the importance of regular groups. Indeed, it shows that those
groups are consistent not only with the symmetry of rules, as established in Theorem 7, but also
with the minimal majority principle. Its quite technical proof can be found in Section 8.

Theorem 11. FUmin 6= ∅ if and only if U is regular.

5 Regular groups

Due to Theorems 7 and 11, it is important to find some simple criteria to check whether a group
is regular or not. In this section we characterize those groups via two properties that, as shown
in Section 6, are simple to verify in some remarkable situations. To present that characterization
result, we need to say something more about permutations.

5.1 Orbits and types of permutations

Fix σ ∈ Sym(X). For every x ∈ X, the σ-orbit of x is defined as x〈σ〉 = {σm(x) ∈ X : m ∈ N}. It is
well known that |x〈σ〉| = s if and only if s = min{m ∈ N : σm(x) = x}. The set O(σ) = {x〈σ〉 : x ∈
X} of the σ-orbits is a partition of X, and we denote its order by r(σ). A system of representatives

of the σ-orbits is a vector (xj)
r(σ)
j=1 ∈ Xr(σ) such that O(σ) = {x〈σ〉1 , . . . , x

〈σ〉
r(σ)}. Note that

X = {σm(xj) ∈ X : m ∈ N, j ∈ {1, . . . , r(σ)}} , (14)
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and
for every m, ` ∈ N, and j1, j2 ∈ {1, . . . , r(σ)},

σm(xj1) = σ`(xj2) if and only if j1 = j2 and |x〈σ〉j1 | divides `−m. (15)

A system of representatives of the σ-orbits (xj)
r(σ)
j=1 ∈ Xr(σ) is called ordered if |x〈σ〉j1 | ≥ |x

〈σ〉
j2
| for

all j1, j2 ∈ {1, . . . , r(σ)} with j1 ≤ j2.
Given k ∈ N, the set of partitions of k is

Π(k) =
⋃k
r=1

{
λ = (λj)

r
j=1 ∈ Nr :

∑r
j=1 λj = k, λ1 ≥ . . . ≥ λr

}
.

Let us consider now the well known surjective function

T :
⋃
k∈N Sk →

⋃
k∈N Π(k), σ 7→ T (σ) = (Tj(σ))

r(σ)
j=1 = (|x〈σ〉j |)

r(σ)
j=1 ,

where (xj)
r(σ)
j=1 is any ordered system of representatives of the σ-orbits. Note that T is well defined

since T (σ), called the type of σ, does not depend on the particular ordered system of representatives
of the σ-orbits chosen. Note also that if σ ∈ Sk, then T (σ) belongs to Π(k). Moreover, the number
of components equal to 1 in the vector T (σ) is equal to the number of fixed points of σ, and
|σ| = lcm(T (σ)). For instance, if σ = (123)(456)(78) ∈ S9, then r(σ) = 4, an ordered system of
representatives of the σ-orbits is (1, 4, 7, 9) ∈ {1, . . . , 9}4, the type of σ is T (σ) = (3, 3, 2, 1) ∈ Π(9),
and |σ| = lcm(3, 3, 2, 1) = 6.

The theoretic importance of the concept of type relies on the fact that two permutations are
conjugate if and only if they have the same type. Looking at the specific purposes of the paper,
we are going to see how checking the regularity of a group U ≤ G reduces to check, for every
(ϕ,ψ, ρ) ∈ U , some arithmetical properties of the order of ψ and the type of ϕ.

Given a prime π and σ ∈
⋃
k∈N Sk, we set |σ|π = max{πa : a ∈ N ∪ {0}, πa | |σ|}.

5.2 Characterization of regular groups

Theorem 12. Let U ≤ G. U is regular if and only if the two following conditions are satisfied:

a) if (ϕ,ψ, id) ∈ U is such that ψ 6= id and π is a prime with |ψ|π = πa for some a ∈ N, then
πa - gcd(T (ϕ));

b) if (ϕ,ψ, ρ0) ∈ U is such that ψ2 = id and ψ is not a conjugate of ρ0, then 2 - gcd(T (ϕ)).

Proof. We first prove that conditions a) and b) are necessary for the regularity of U.
We begin showing that if a) does not hold, then U is not regular. By assumption there exist

g = (ϕ,ψ, id) ∈ U with ψ 6= id, a prime π and a ∈ N such that πa = |ψ|π | gcd(T (ϕ)), which
means that each ϕ-orbit has order divisible by πa. Consider the positive integer m = |ψ|/πa and

let gm = (ϕm, ψm, id) ∈ U. Set gm = ĝ, ϕm = ϕ̂ and ψm = ψ̂. Since π - m, each ϕ̂-orbit has

order divisible by πa, that is, πa | gcd(T (ϕ̂)); moreover, by construction, |ψ̂| = πa > 1. Let (ij)
r(ϕ̂)
j=1

be an ordered system of representatives for the ϕ̂-orbits, so that, by (14), H = {ϕ̂k(ij) : k ∈
N, j ∈ {1, . . . , r(ϕ̂)}}. Let p ∈ P be defined by pϕ̂k(ij) = ψ̂k for all j ∈ {1, . . . , r(ϕ̂)} and k ∈ N.

We show that the definition of p is well posed. Let ϕ̂k(ij1) = ϕ̂`(ij2), for some k, ` ∈ N and
j1, j2 ∈ {1, . . . , r(ϕ̂)}. Then, by (15), we have j1 = j2 and Tj1(ϕ̂) | `− k. So we also have πa | `− k
and, since |ψ̂| = πa, we finally obtain ψ̂k = ψ̂`. We now see that pĝ = p, that is, for every i ∈ H,
pϕ̂(i) = ψ̂pi. Pick i ∈ H; then there exist j ∈ {1, . . . , r(ϕ̂)} and k ∈ N such that i = ϕ̂k(ij) and

thus pϕ̂(i) = pϕ̂(ϕ̂k(ij)) = pϕ̂k+1(ij) = ψ̂k+1 = ψ̂pϕ̂k(ij) = ψ̂pi. So we have (ϕ̂, ψ̂, id) ∈ StabU (p), with

ψ̂ 6= id, which implies that U is not regular.
Next we show that if b) does not hold, then U is not regular. By assumption there exists

g = (ϕ,ψ, ρ0) ∈ U with ψ2 = id and ψ not a conjugate of ρ0 such that 2 | gcd(T (ϕ)). Let (ij)
r(ϕ)
j=1
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be an ordered system of representatives for the ϕ-orbits, so that, by (14), H = {ϕk(ij) : k ∈ N, j ∈
{1, . . . , r(ϕ)}}. Let p ∈ P be defined by pϕk(ij) = ψkρk0 , for all j ∈ {1, . . . , r(ϕ)} and k ∈ N. Since

ψ2 = ρ2
0 = id, this simply means pϕk(ij) = id for k even and pϕk(ij) = ψρ0 for k odd. We show

that the definition of p is well posed. Let ϕk(ij1) = ϕ`(ij2), for some j1, j2 ∈ {1, . . . , r(ϕ)} and
some k, ` ∈ N. Then, by (15), j1 = j2 and Tj1(ϕ) | ` − k, which implies 2 | ` − k and therefore
ψkρk0 = ψ`ρ`0. We claim that pg = p, that is, for every i ∈ H, pϕ(i) = ψpiρ0. Pick i ∈ H; then there

exist j ∈ {1, . . . , r(ϕ)} and k ∈ N such that i = ϕk(ij), and thus pϕ(i) = pϕ(ϕk(ij)) = pϕk+1(ij) =

ψk+1ρk+1
0 = ψpϕk(ij)ρ0 = ψpiρ0. So we have (ϕ,ψ, ρ0) ∈ StabU (p), with ψ not conjugate to ρ0 and

thus U is not regular.
Let us prove now that conditions a) and b) are sufficient for the regularity of U. First of all, we

show that, for every p ∈ P,

(ϕ,ψ, id) ∈ StabU (p) ⇒ |ψ| | gcd(T (ϕ)). (16)

Namely, from p(ϕ,ψ,id) = p we get pϕ(i) = ψpi for all i ∈ H and thus also pϕk(i) = ψkpi for all

k ∈ N and all i ∈ H. Let (ij)
r(ϕ)
j=1 be an ordered system of representatives for the ϕ-orbits. Then

ϕTj(ϕ)(ij) = ij and so pij = p
ϕTj(ϕ)(ij)

= ψTj(ϕ)pij , which says ψTj(ϕ) = id. Therefore, for every

j ∈ {1, . . . , r(ϕ)}, |ψ| | Tj(ϕ), that is, |ψ| | gcd(T (ϕ)).
Let now p ∈ P be fixed. In order to get the regularity of U , we first prove that, for every

(ϕ,ψ, id) ∈ StabU (p), we have ψ = id. Consider then g = (ϕ,ψ, id) ∈ StabU (p) and assume by
contradiction that ψ 6= id. Thus, there exists at least one prime π with |ψ|π > 1, say |ψ|π = πa

for some a ∈ N. Moreover, there exists m ∈ N such that π - m and |ψm| = πa. Since StabU (p) is a
subgroup of U , we have that gm = (ϕm, ψm, id) ∈ StabU (p). Thus, by (16), πa = |ψm| | gcd(T (ϕm)).
Yet, it is easily observed that gcd(T (ϕm)) | gcd(T (ϕ)) and so we also have πa | gcd(T (ϕ)), against
condition a). We finally need to show that there exists ψ∗ ∈ Sn conjugate to ρ0 such that, for
every (ϕ,ψ, ρ0) ∈ StabU (p), ψ = ψ∗. Consider g = (ϕ,ψ, ρ0) ∈ StabU (p) and first prove that ψ is
a conjugate of ρ0. Note that g2 = (ϕ2, ψ2, id) ∈ StabU (p) and thus, by the previous case, ψ2 = id.
Assume, by contradiction, that ψ is not a conjugate of ρ0. Since g ∈ StabU (p) ≤ U, we have that
pϕk(i) = ψkpiρ

k
0 for all k ∈ N and all i ∈ H. Due to ψ2 = ρ2

0 = id, that means pϕk(i) = pi for

k even and pϕk(i) = ψpiρ0 for k odd. If there exists a ϕ-orbit i〈ϕ〉 of odd order k, then we have

pi = pϕk(i) = ψpiρ0 and therefore ψ = piρ0p
−1
i is a conjugate of ρ0, against our assumption. So, for

every j ∈ {1, . . . , r(ϕ)}, Tj(ϕ) is even, which contradicts condition b). Thus, we are left with proving
that if g = (ϕ,ψ, ρ0), g′ = (ϕ′, ψ′, ρ0) ∈ StabU (p) then ψ = ψ′. This is immediately done noting
that gg′−1 = (ϕϕ′−1, ψψ′−1, id) ∈ StabU (p) which, as already proved, implies ψψ′−1 = id.

6 Subcommittees and subclasses

In this section we focus on rules that are anonymous with respect to subcommittees, neutral with
respect to subclasses and reversal symmetric. To begin with, let us formalize those versions of the
principles of anonymity and neutrality in terms of U -symmetry.

Given B = {Bj}sj=1 a partition of H, we define

V (B) = {ϕ ∈ Sh : ϕ(Bj) = Bj for all j ∈ {1, . . . , s}} ,

and given C = {Ck}tk=1 a partition of N , we define

W (C) = {ψ ∈ Sn : ψ(Ck) = Ck for all k ∈ {1, . . . , t}} .

Note that V (B) is a subgroup of Sh and W (C) is a subgroup of Sn. Moreover, V ({H}) = Sh and
W ({N}) = Sn.
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A rule is said to be anonymous with respect to a partition B of H, briefly B-anonymous, if it
is V (B)× {id} × {id}-symmetric. A rule is said to be neutral with respect to a partition C of N ,
briefly C-neutral, if it is {id} ×W (C) × {id}-symmetric. Thus, referring to the discussion carried
on in the introduction, if B is interpreted as the set of subcommittees in which H is divided, then
B-anonymous rules are those rules which do not distinguish among individuals belonging to the
same subcommittee. Analogously, interpreting C as the set of subclasses in which N is divided,
we have that C-neutral rules are those rules equally treating alternatives within each subclass.
Note also that, because of Proposition 3, a rule is B-anonymous and C-neutral if and only if
it is V (B) ×W (C) × {id} -symmetric. Similarly, a rule is B-anonymous, C-neutral and reversal
symmetric if and only if it is V (B)×W (C)× Ω -symmetric.

Using Theorems 11 and 12, we can now prove the main result of the paper, that is, Theorem
15 below. It provides simple tests to check whether, given a partition of individuals into subcom-
mittees and a partition of alternatives into subclasses, there exists a minimal majority rule which
is anonymous with respect to the considered subcommittees, neutral with respect to the considered
subclasses and possibly reversal symmetric.

Lemma 13. Let B = {Bj}sj=1 be a partition of H and C = {Ck}tk=1 be a partition of N . Then,
for every (ϕ,ψ, ρ) ∈ V (B)×W (C)× Ω, we have

gcd(T (ϕ)) | gcd(|Bj |)sj=1 and |ψ| | lcm(|Ck|!)tk=1.

Proof. Let (ϕ,ψ, ρ) ∈ V (B) ×W (C) × Ω. Since ϕ ∈ V (B), each element of O(ϕ) is a subset of a
suitable element of B, which immediately implies gcd(T (ϕ)) | gcd(|Bj |)sj=1. On the other hand, since
ψ ∈W (C), we have that ψ = u1 · · ·ut for suitable pairwise commuting permutations u1, . . . , ut ∈ Sn
such that, for every k ∈ {1, . . . , t}, uk fixes all the elements in N \ Ck, so that |uk| | |Ck|!. As a
consequence, we have that |ψ| = lcm(|u1|, . . . , |ut|) and then |ψ| | lcm(|Ck|!)tk=1.

Theorem 14. Let B = {Bj}sj=1 be a partition of H and C = {Ck}tk=1 be a partition of N . Let
|Ck∗ | = max{|Ck|}tk=1. Then:

i) V (B)×W (C)× {id} is regular if and only if

gcd
(
gcd(|Bj |)sj=1, |Ck∗ |!

)
= 1; (17)

ii) V (B)×W (C)× Ω is regular if and only if

gcd
(
gcd(|Bj |)sj=1, lcm(2, |Ck∗ |!)

)
= 1. (18)

Proof. Let U1 = V (B)×W (C)× {id} and U2 = V (B)×W (C)× Ω.
We first prove statement ii). Assume that condition (18) holds true and show that U2 is regular.

By Theorem 12, we need to show that conditions a) and b) are satisfied. Let (ϕ,ψ, id) ∈ U2 with
ψ 6= id and π be a prime such that |ψ|π = πa for some a ∈ N. By contradiction, assume that
πa | gcd(T (ϕ)). By Lemma 13, gcd(T (ϕ)) | gcd(|Bj |)sj=1 and |ψ| | lcm(|Ck|!)tk=1 = |Ck∗ |!. In

particular, π | gcd(|Bj |)sj=1 and π | |Ck∗ |!, so that π | gcd
(
gcd(|Bj |)sj=1, lcm(2, |Ck∗ |!)

)
= 1 and

the contradiction is found. Let now (ϕ,ψ, ρ0) ∈ U with ψ2 = id, ψ not a conjugate of ρ0 and, by
contradiction, assume that 2 | gcd(T (ϕ)). Then by Lemma 13, we get 2 | gcd(|Bj |)sj=1. Therefore,

2 | gcd
(
gcd(|Bj |)sj=1, lcm(2, |Ck∗ |!)

)
= 1, a contradiction.

Assume next that there exists a prime π such that π | gcd
(
gcd(|Bj |)sj=1, lcm(2, |Ck∗ |!)

)
, and

show that U2 is not regular. Note that π | |Bj | for all j ∈ {1, . . . , s}. If |Ck∗ | = 1, then π = 2 and
we show that condition b) in Theorem 12, fails. Indeed, choose ϕ ∈ Sh cyclically permuting all the
elements in Bj for all j ∈ {1, . . . , s}, and consider (ϕ, id, ρ0) ∈ U2. We have that id2 = id and id is
not conjugate of ρ0, because |ρ0| = 2. However, by the definition of ϕ, 2 | gcd(T (ϕ)) = gcd(|Bj |)sj=1.
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If |Ck∗ | ≥ 2, then π | |Ck∗ |!, that is, π ≤ |Ck∗ |. We show that condition a) in Theorem 12, fails.
Choose ϕ ∈ Sh cyclically permuting all the elements in Bj for all j ∈ {1, . . . , s}, and ψ ∈ Sn acting
as a cycle of length π on the set Ck∗ and leaving fixed any other element in N . Clearly, ψ(Ck) = Ck
for all k ∈ {1, . . . , t}, so that (ϕ,ψ, id) ∈ U2 and π = |ψ| = |ψ|π | gcd(T (ϕ)) = gcd(|Bj |)sj=1.

We now prove statement i). Assume that condition (17) holds true and show that U1 is regular.
If |Ck∗ | = 1, then U1 ≤ Sh × {id} × {id}, so that U1 is regular. If instead |Ck∗ | ≥ 2, then (17)
implies (18), and so, by ii), U2 is regular. Since U1 ≤ U2, U1 is regular too.

Assume next that there exists a prime π such that π | gcd
(
gcd(|Bj |)sj=1, |Ck∗ |!

)
, and show that

U1 is not regular. Note that π | |Bj | for all j ∈ {1, . . . , s}, and π | |Ck∗ |!, that is, π ≤ |Ck∗ |. Thus,
the same argument used to conclude the proof of statement ii) shows that condition a) in Theorem
12 fails.

Theorem 15. Let B = {Bj}sj=1 be a partition of H and C = {Ck}tk=1 be a partition of N . Let
|Ck∗ | = max{|Ck|}tk=1. Then:

i) there exists a minimal majority rule that is B-anonymous and C-neutral if and only if

gcd
(
gcd(|Bj |)sj=1, |Ck∗ |!

)
= 1;

ii) there exists a minimal majority rule that is B-anonymous, C-neutral and reversal symmetric
if and only if

gcd
(
gcd(|Bj |)sj=1, lcm(2, |Ck∗ |!)

)
= 1.

Proof. Apply Theorems 11 and 14.

It is worth noting that if C has an element which is not a singleton, then the existence of
a minimal majority rule that is B-anonymous and C-neutral is equivalent to the existence of a
minimal majority rule that is B-anonymous, C-neutral and reversal symmetric.

We propose now some simple but interesting consequences of Theorem 15. Corollary 16 shows
that we can always build a neutral and reversal symmetric minimal majority rule that allows all
individuals but one to be anonymous. That special type of partial anonymity can be naturally
associated with the presence of a president in the committee. Corollary 18 generalizes Theorem 14
in Bubboloni and Gori (2014) to rules also satisfying reversal symmetry.

Corollary 16. Let B = {B1, B2} be a partition of H such that B2 is a singleton. Then, for every
partition C of N , there exists a minimal majority rule that is B-anonymous, C-neutral and reversal
symmetric.

Proof. Observe that gcd(|B1|, |B2|) = 1 and apply Theorem 15.

Lemma 17. The following conditions are equivalent:

i) G is regular;

ii) Sh × Sn × {id} is regular;

iii) gcd(h, n!) = 1.

Proof. i) ⇒ ii). This immediately follows from Sh × Sn × {id} ≤ G.
ii) ⇒ iii). Let Sh × Sn × {id} be regular. Given a prime π with π ≤ n, we need to show that

π - h. Consider ψ ∈ Sn a cycle of length π, ϕ ∈ Sh a cycle of length h and (ϕ,ψ, id) ∈ Sh×Sn×{id}.
Then by Theorem 12, π = |ψ|π - gcd(T (ϕ)) = h.

iii) ⇒ i). Let gcd(h, n!) = 1. Since G = V ({H}) × W ({N}) × Ω, we immediately get the
regularity of G using Theorem 14.
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Corollary 18. The following statements hold true:

i) there exists an anonymous and reversal symmetric minimal majority rule if and only if h is
odd;

ii) there exists a neutral reversal symmetric minimal majority rule;

iii) there exists an anonymous and neutral minimal majority rule if and only if gcd(h, n!) = 1;

iv) there exists an anonymous, neutral and reversal symmetric minimal majority rule if and only
if gcd(h, n!) = 1.

Proof. i) By Theorem 11, we have to study the regularity of U = Sh × {id} × Ω. Note that
U = V (B)×W (C)×Ω, where B = {H} and C = {{i} : i ∈ {1, . . . , n}}. Then, by Theorem 14, we
have that U is regular if and only if gcd(h, 2) = 1, that is, h is odd.

ii) By Theorem 11, we have to study the regularity of U = {id} × Sn × Ω. Note that U =
V (B)×W (C)× Ω, where B = {{i} : i ∈ {1, . . . , h}} and C = {N}. Then, by Theorem 14, we get
that U is regular .

iii) By Theorem 11, we have to study the regularity of U = Sh × Sn × {id}. By Lemma 17, we
know that U is regular if and only if gcd(h, n!) = 1.

iv) By Theorem 11, we have to study the regularity of G. By Lemma 17, we know that G is
regular if and only if gcd(h, n!) = 1.

7 Some applications

The algebraic approach we employ has the advantage to provide a method to potentially build and
count all the rules belonging to FU and FUmin for all U ≤ G regular. In this section we show how
to perform such computations in two simple cases.

7.1 Three individuals and three alternatives

Let h = n = 3 so that H = {1, 2, 3}, N = {1, 2, 3}, |P| = 63 and ρ0 = (13). In this case, by
Corollary 18, there is no anonymous, neutral and reversal symmetric minimal majority rule because
gcd(3, 3!) 6= 1. Consider then the partition B = {{1, 2}, {3}} of H distinguishing individual 3, who
can be thought, for instance, to be the president of the committee, and the partition C = {N}
of N . Corollary 16, guarantees the existence of B-anonymous, neutral and reversal symmetric
minimal majority rules, that is, U -symmetric minimal majority rules, where U = V (B) × S3 × Ω.
Note that U has order 24 and if (ϕ,ψ, ρ) ∈ U , then ϕ(3) = 3. By Propositions 6 and 10, we can

completely describe these rules by finding a system of representatives of the U -orbits P = (pj)
R(U)
j=1 ,

and determining, for every j ∈ {1, . . . , R(U)}, the sets SU2 (pj).
Since, for every p ∈ P, the orbit pU contains a preference profile with preference relation

associated with individual 3 given by id, we construct P by selecting the preference profiles in
Pid = {p ∈ P : p3 = id}. We claim that if p ∈ Pid, then

StabU (p) ≤ T = {(id, id, id), ((12), id, id), (id, ρ0, ρ0), ((12), ρ0, ρ0)}.

Namely, since p3 = id, if (ϕ,ψ, ρ) ∈ StabU (p), then we also have p
(ϕ,ψ,ρ)
3 = id. Moreover, ψρ = id,

so that ψ = ρ−1 = ρ. In other words, StabU (p) ≤ {(ϕ, ρ, ρ) : ϕ ∈ {(12), id}, ρ ∈ Ω} = T . It
immediately follows that, for every p ∈ Pid, we have

SU1 (p) =

{
L(N) if StabU (p) ∩ {(id, ρ0, ρ0), ((12), ρ0, ρ0)} = ∅

Ω if StabU (p) ∩ {(id, ρ0, ρ0), ((12), ρ0, ρ0)} 6= ∅,
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since the centralizer CS3
(ρ0) is equal to Ω.

Note that T is a group of order 4 which is generated by ((12), id, id) and (id, ρ0, ρ0). In particular,
for every p ∈ P, we have that |StabU (p)| divides 4 and therefore, recalling (11), we get {|pU | : p ∈
P} ⊆ {6, 12, 24}. We split the set PU of U -orbits into the three disjoint subsets

A = {pU ∈ PU : |pU | = 6}, B = {pU ∈ PU : |pU | = 12}, C = {pU ∈ PU : |pU | = 24},

and put a = |A|, b = |B|, c = |C|. Since the U -orbits give a partition of P, we have 6a+12b+24c =
63, that is,

a+ 2b+ 4c = 36. (19)

We construct P selecting separately a set of representatives for the orbits in A, B and C. Let
p = (σ, µ | id) ∈ Pid, where σ, µ ∈ S3. The symbol | is introduced to put in evidence the elements
of the partition B. If pU ∈ A, then StabU (p) = T . From ((12), id, id) ∈ StabU (p), it follows that
σ = µ, while (id, ρ0, ρ0) ∈ StabU (p) gives ρ0σρ0 = σ and therefore σ ∈ CS3

(ρ0) = Ω. Thus, we have
just two choices for p given by p1 = (id, id | id) and p2 = (ρ0, ρ0 | id). Both of them lie effectively
in A and (p1)U 6= (p2)U because p1 has three equal components while p2 has not. This proves
a = 2 and gives the first two representatives in P. Next let pU ∈ B. Then |StabU (p)| = 2, so
that StabU (p) is generated by one element belonging to {((12), id, id), (id, ρ0, ρ0), ((12), ρ0, ρ0)}.
We analyse, by a case by case argument, those three possibilities leaving some easy details to
the reader. StabU (p) = 〈((12), id, id)〉 if and only if σ = µ, with σ /∈ Ω; the preference profiles
p3 = ((132), (132) | id) and p4 = ((23), (23) | id) generate distinct orbits, while ((123), (123) | id) ∈
(p3)U and ((12), (12) | id) ∈ (p4)U . StabU (p) = 〈(id, ρ0, ρ0)〉 if and only if σ = id and µ = ρ0 or
σ = ρ0 and µ = id; these choices lead to preference profiles both in the orbit of p5 = (id, ρ0 | id).
StabU (p) = 〈((12), ρ0, ρ0)〉 if and only if µ = ρ0σρ0, with σ 6∈ Ω; this gives the two distinct orbits
(p6)U and (p7)U , where p6 = ((123), (132) | id) and p7 = ((12), (23) | id). It is easily checked that
no coincidence is possible among the orbits (pj)U for j ∈ {3, . . . , 7}, and thus b = 5. By relation
(19), we then have c = 6 and R(U) = 13. As a consequence, we are left with finding 6 preference
profiles whose orbits are distinct and in C. It can be easily proved that the desired representatives
are p8, . . . , p13 in the list below, where we explicitly write in the matrix form all the representatives
for the U -orbits:

p1 =

 1 1 1
2 2 2
3 3 3

 , p2 =

 3 3 1
2 2 2
1 1 3

 , p3 =

 3 3 1
1 1 2
2 2 3

 , p4 =

 1 1 1
3 3 2
2 2 3

 ,

p5 =

 1 3 1
2 2 2
3 1 3

 , p6 =

 2 3 1
3 1 2
1 2 3

 , p7 =

 2 1 1
1 3 2
3 2 3

 , p8 =

 1 2 1
2 1 2
3 3 3

 ,
p9 =

 1 2 1
2 3 2
3 1 3

 , p10 =

 3 3 1
2 1 2
1 2 3

 , p11 =

 3 1 1
2 3 2
1 2 3

 , p12 =

 2 1 1
3 3 2
1 2 3

 ,
p13 =

 2 2 1
3 1 2
1 3 3

 .
Little further work allows to get the following table:
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C2 C3 SU1 SU2
p1

{
[1, 2, 3]T

} {
[1, 2, 3]T

} {
[1, 2, 3]T , [3, 2, 1]T

}
{[1, 2, 3]T }

p2
{

[3, 2, 1]T
}

L({1, 2, 3})
{

[1, 2, 3]T , [3, 2, 1]T
} {

[3, 2, 1]T
}

p3
{

[3, 1, 2]T
} {

[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T
}

L({1, 2, 3}) {[3, 1, 2]T }
p4

{
[1, 3, 2]T

} {
[1, 2, 3]T [1, 3, 2]T

}
L({1, 2, 3})

{
[1, 3, 2]T

}
p5

{
[1, 2, 3]T

}
L({1, 2, 3})

{
[1, 2, 3]T , [3, 2, 1]T

} {
[1, 2, 3]T

}
p6 ∅ L({1, 2, 3})

{
[1, 2, 3]T , [3, 2, 1]T

} {
[1, 2, 3]T , [3, 2, 1]T

}
p7 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [1, 3, 2]T }

{
[1, 2, 3]T , [3, 2, 1]T

}
{[1, 2, 3]T }

p8 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T } L({1, 2, 3}) {[1, 2, 3]T }
p9 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [3, 2, 1]T } L({1, 2, 3}) {[1, 2, 3]T }
p10 {[3, 1, 2]T } L({1, 2, 3}) L({1, 2, 3}) {[3, 1, 2]T }
p11 {[1, 3, 2]T } L({1, 2, 3}) L({1, 2, 3}) {[1, 3, 2]T }
p12 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } L({1, 2, 3}) {[1, 2, 3]T }
p13 {[2, 1, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } L({1, 2, 3}) {[2, 1, 3]T }

Looking at the table and using Propositions 6 and 10, we deduce that |FU | = 21338 and |FUmin| = 2.
In particular, there are only two U -symmetric minimal majority rules one for each possible choice
related to p6.

We finally observe that the rules in FUmin can be effectively described in terms of the function
S defined in (8). Indeed, we have that FUmin = {F1, F2}, where F1 and F2 are defined, for every
p ∈ P, as

F1(p) =

{
S(p) if S(p) ∈ L(N)

p3 if S(p) 6∈ L(N)
and F2(p) =

{
S(p) if S(p) ∈ L(N)

p3ρ0 if S(p) 6∈ L(N).

Thus, having found an agreement on the principles of minimal majority, neutrality, reversal sym-
metry and anonymity with respect to the subcommittees {1, 2} and {3}, we have that committee
members are left with deciding which rule to employ between F1 and F2. Of course, if individual 3
is assumed to have more decision power than other individuals, then the choice of F1 is definitely
more appropriate.

7.2 Five individuals and three alternatives

Let h = 5 and n = 3 so that, as in the previous example, ρ0 = (13). Since gcd(5, 3!) = 1, by
Corollary 18, there exists an anonymous, neutral and reversal symmetric minimal majority rule,
that is, a G-symmetric minimal majority rule where G = S5×S3×Ω. In order to apply Propositions
6 and 10, we need a system of representatives of the G-orbits. Bubboloni and Gori (2014, Section
10) consider U = S5 × S3 × {id}, compute R(U) = 42, and construct a system of representatives
of the U -orbits P̂ = (p̂i)42

i=1. Here we extract from P̂ a system of representatives of the G-orbits

P = (pj)
R(G)
j=1 .

In order to determine P , we scroll the list P̂ starting from the beginning, inquiring if a certain
p̂i has a stabilizer containing an element of the type (ϕ,ψ, (13)) ∈ G, with ψ a conjugate of (13),
that is, ψ ∈ {(12), (13), (23)}. If that happens, then [StabG(p̂i) : StabU (p̂i)] = 2, (p̂i)G = (p̂i)U and
SG1 (p̂i) = {q ∈ L({1, 2, 3}) : ψq(13) = q}; in this case we put p̂i in the list P . If that does not
happen, then there exists a unique k ∈ N with i < k ≤ 42 such that (p̂i)G = (p̂i)U ∪ (p̂k)U and we
have SG1 (p̂i) = L({1, 2, 3}); in this case we put p̂i in the list P and eliminate p̂k from the list P̂ .6

6All the facts above are consequence of [G : U ] = 2. Further details about this example can be found in Bubboloni
and Gori (2013).
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At the end of the described procedure we get the following list of representatives for the G-orbits,
expressed in the matrix form:

p1 =

 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

 , p2 =

 1 1 1 1 2
2 2 2 2 1
3 3 3 3 3

 , p3 =

 1 1 1 1 3
2 2 2 2 2
3 3 3 3 1

 ,

p4 =

 1 1 1 1 2
2 2 2 2 3
3 3 3 3 1

 , p5 =

 1 1 1 2 2
2 2 2 1 1
3 3 3 3 3

 , p6 =

 1 1 1 3 3
2 2 2 2 2
3 3 3 1 1


p7 =

 1 1 1 2 2
2 2 2 3 3
3 3 3 1 1

 , p8 =

 1 1 1 2 3
2 2 2 1 2
3 3 3 3 1

 , p9 =

 1 1 1 2 1
2 2 2 1 3
3 3 3 3 2

 ,
p10 =

 1 1 1 2 2
2 2 2 1 3
3 3 3 3 1

 , p11 =

 1 1 1 2 3
2 2 2 1 1
3 3 3 3 2

 , p12 =

 1 1 1 3 2
2 2 2 2 3
3 3 3 1 1

 ,
p13 =

 1 1 1 2 3
2 2 2 3 1
3 3 3 1 2

 , p14 =

 1 1 2 2 3
2 2 1 1 2
3 3 3 3 1

 , p15 =

 1 1 2 2 1
2 2 1 1 3
3 3 3 3 2

 ,
p16 =

 1 1 3 3 2
2 2 2 2 1
3 3 1 1 3

 , p17 =

 1 1 2 2 2
2 2 3 3 1
3 3 1 1 3

 , p18 =

 1 1 2 2 3
2 2 3 3 2
3 3 1 1 1

 ,
p19 =

 1 1 3 3 2
2 2 1 1 3
3 3 2 2 1

 , p20 =

 1 1 2 3 1
2 2 1 2 3
3 3 3 1 2

 , p21 =

 1 1 2 3 2
2 2 1 2 3
3 3 3 1 1

 ,
p22 =

 1 1 2 3 3
2 2 1 2 1
3 3 3 1 2

 , p23 =

 1 1 2 1 2
2 2 1 3 3
3 3 3 2 1

 , p24 =

 1 1 2 2 3
2 2 1 3 1
3 3 3 1 2

 ,
p25 =

 1 1 3 2 3
2 2 2 3 1
3 3 1 1 2

 , p26 =

 1 2 3 1 2
2 1 2 3 3
3 3 1 2 1

 .
In particular, we obtain R(G) = 26. Looking at the representatives, a simple but tedious computa-
tion leads to the following table:
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C
3

C
4

C
5

S
G 1

S
G 2

p
1

{ [1
,2
,3

]T
}

{ [1
,2
,3

]T
}

{ [1
,2
,3

]T
}

{[
1
,2
,3

]T
,[

3
,2
,1

]T
}

{[
1
,2
,3

]T
}

p
2

{ [1
,2
,3

]T
}

{ [1
,2
,3

]T
}

{ [1
,2
,3

]T
,[

2,
1,

3
]T
}

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
3

{ [1
,2
,3

]T
}

{ [1
,2
,3

]T
}

L
({

1,
2,

3}
)

{[
1
,2
,3

]T
,[

3
,2
,1

]T
}

{[
1
,2
,3

]T
}

p
4

{ [1
,2
,3

]T
}

{ [1
,2
,3

]T
}

{ [1
,2
,3

]T
,[

2
,1
,3

]T
,[

2
,3
,1

]T
}

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
5

{ [1
,2
,3

]T
}

{[
1
,2
,3

]T
,[

2,
1
,3

]T
}

{[
1
,2
,3

]T
,[

2,
1,

3
]T
}

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
6

{ [1
,2
,3

]T
}

L
({

1,
2,

3}
)

L
({

1,
2,

3}
)

{[
1
,2
,3

]T
,[

3
,2
,1

]T
}

{[
1
,2
,3

]T
}

p
7
{[

1,
2,

3]
T
}
{[

1
,2
,3

]T
,[

2,
1,

3]
T
,[

2
,3
,1

]T
}
{[

1
,2
,3

]T
,[

2
,1
,3

]T
,[

2
,3
,1

]T
}

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
8
{[

1,
2,

3]
T
}

{[
1
,2
,3

]T
,[

2,
1
,3

]T
}

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
9
{[

1,
2,

3]
T
}

{[
1,

2,
3]
T
}

{[
1
,2
,3

]T
,[

3
,2
,1

]T
,[

1
,3
,2

]T
}
{[

1
,2
,3

]T
,[

3
,2
,1

]T
}

{[
1
,2
,3

]T
}

p
1
0
{[

1,
2,

3]
T
}

{[
1
,2
,3

]T
,[

2,
1
,3

]T
}

{[
1
,2
,3

]T
,[

2
,1
,3

]T
,[

2
,3
,1

]T
}

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
1
1
{[

1,
2,

3]
T
}

{[
1,

2,
3]
T
}

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
1
2
{[

1,
2,

3]
T
}
{[

1
,2
,3

]T
,[

2,
1,

3]
T
,[

2
,3
,1

]T
}

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
1
3
{[

1,
2,

3]
T
}

{[
1
,2
,3

]T
,[

2,
3
,1

]T
}

L
({

1,
2,

3}
)

{[
1
,2
,3

]T
,[

3
,2
,1

]T
}

{[
1
,2
,3

]T
}

p
1
4
{[

2,
1,

3]
T
}

{[
1
,2
,3

]T
,[

2,
1
,3

]T
}

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
2
,1
,3

]T
}

p
1
5
{[

1,
2,

3]
T
}

{[
1
,2
,3

]T
,[

2,
1
,3

]T
}

{[
1
,2
,3

]T
,[

3
,2
,1

]T
,[

1
,3
,2

]T
}

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
1
6
{[

2,
1,

3]
T
}

L
({

1,
2,

3}
)

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
2
,1
,3

]T
}

p
1
7
{[

2,
1,

3]
T
}
{[

1
,2
,3

]T
,[

2,
1,

3]
T
,[

2
,3
,1

]T
}
{[

1
,2
,3

]T
,[

2
,1
,3

]T
,[

2
,3
,1

]T
}
{[

2
,1
,3

]T
,[

3
,1
,2

]T
}

{[
2
,1
,3

]T
}

p
1
8
{[

2,
3,

1]
T
}
{[

1
,2
,3

]T
,[

2,
1,

3]
T
,[

2
,3
,1

]T
}

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
2
,3
,1

]T
}

p
1
9

∅
{[

1
,2
,3

]T
,[

1,
3,

2]
T
,[

3
,1
,2

]T
}

L
({

1,
2,

3}
)

{[
1
,3
,2

]T
,[

2
,3
,1

]T
}

{[
1
,3
,2

]T
}

p
2
0
{[

1,
2,

3]
T
}
{[

1
,2
,3

]T
,[

3,
2,

1]
T
,[

1
,3
,2

]T
}

L
({

1,
2,

3}
)

{[
1
,2
,3

]T
,[

3
,2
,1

]T
}

{[
1
,2
,3

]T
}

p
2
1
{[

2,
1,

3]
T
}
{[

1
,2
,3

]T
,[

2,
1,

3]
T
,[

2
,3
,1

]T
}

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
2
,1
,3

]T
}

p
2
2
{[

1,
2,

3]
T
}

L
({

1,
2,

3}
)

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
2
3
{[

1,
2,

3]
T
}

{[
1
,2
,3

]T
,[

2,
1
,3

]T
}

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
2
4
{[

1,
2,

3]
T
}

L
({

1,
2,

3}
)

L
({

1,
2,

3}
)

L
({

1
,2
,3
})

{[
1
,2
,3

]T
}

p
2
5

∅
L

({
1,

2,
3}

)
L

({
1,

2,
3}

)
{[

1
,2
,3

]T
,[

3
,2
,1

]T
}
{[

1
,2
,3

]T
,[

3
,2
,1

]T
}

p
2
6
{[

2,
1,

3]
T
}

L
({

1,
2,

3}
)

L
({

1,
2,

3}
)

{[
2
,1
,3

]T
,[

3
,1
,2

]T
}

{[
2
,1
,3

]T
}
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Looking at the table and using Propositions 6 and 10, we deduce in particular that |FG| = 226316

and |FGmin| = 2. Then, there are only two possible anonymous, neutral and reversal symmetric
minimal majority rules, one for each possible social outcome associated with p25. As [1, 2, 3]T

is present in p25 twice, while [3, 2, 1]T only once, the choice of [1, 2, 3]T could be judged more
appropriate.

We finally observe that FUmin \ FGmin 6= ∅ because, as proved in Bubboloni and Gori (2014,
Section 10), |FUmin| = 18. That shows, as expected, that there are anonymous and neutral minimal
majority rules that are not reversal symmetric.

8 Proof of Theorem 11

Assume that FUmin 6= ∅. Then FU 6= ∅ and, by Theorem 7, U is regular. In order to prove the
converse, assume that U is regular. By Theorem 7, we know that FU 6= ∅ and then, for every p ∈ P,
SU1 (p) 6= ∅. We are going to prove that, for every p ∈ P, SU2 (p) 6= ∅, as well. Indeed, by Proposition
10, that implies FUmin 6= ∅. Of course, for every p ∈ P such that StabU (p) ≤ Sh × {id} × {id}, we
have SU1 (p) = L(N) so that SU2 (p) = Cν(p)(p) 6= ∅. Thus, we are left with proving that, for every
p ∈ P such that there exists (ϕ,ψ, ρ0) ∈ StabU (p) with ψ conjugate to ρ0, we have SU2 (p) 6= ∅.

From now till the end of the section, let us fix p ∈ P and (ϕ,ψ, ρ0) ∈ StabU (p) with ψ conjugate to
ρ0. For simplicity of notation, we set ν = ν(p). Recall that, under the assumption that U is regular,
we have to prove that SU2 (p) = SU1 (p) ∩ Cν(p) 6= ∅ .

We are going to exhibit an element of the set SU2 (p), namely the linear order q defined in
(24). The construction of q is quite tricky and relies on some preliminary lemmas concerning the
properties of the relations Σν(p) and ΣCν (p) defined in (20) and (21). Thus, the first part of the
section is devoted to the study of such relations.

First of all, being ψ a conjugate of ρ0, we have that ψ has the same type of ρ0 and, in particular,
|ψ| = 2. Let k = r(ψ), K = {1, . . . , k}, and let (x̂j)

k
j=1 ∈ Nk be an ordered system of representatives

of the ψ-orbits. Then, we have

O(ψ) = {{x̂j , ψ(x̂j)} : j ∈ K} .

Note that if n is even, then k = n
2 ; |{x̂j , ψ(x̂j)}| = 2 for all j ∈ K; ψ has no fixed point. If instead

n is odd, then k = n+1
2 ; |{x̂j , ψ(x̂j)}| = 2 for all j ∈ K \ {k}; x̂k is the unique fixed point of ψ.

Consider now the relation on N given by

Σν(p) = {(x, y) ∈ N ×N : |{i ∈ H : x >pi y}| ≥ ν} . (20)

So (x, y) ∈ Σν(p) means that at least ν individuals prefer x to y with respect to the preference
profile p. Observe that Cν(p) = {f ∈ L(N) : f ⊇ Σν(p)} and since Cν(p) is non-empty, we have that
Σν(p) is acyclic. Note also that Σν(p) is asymmetric and generally not transitive and not complete.
Thus, x ≥Σν(p) y is equivalent to x >Σν(p) y and implies x 6= y. We will write, for compactness,
x >ν y instead of x >Σν(p) y. Our first result is about the role of ψ in the relation Σν(p).

Lemma 19. Let x, y ∈ N . Then x >ν y if and only if ψ(y) >ν ψ(x).

Proof. Let x, y ∈ N and consider the two subsets of H given by A = {i ∈ H : x >pi y} and
B = {i ∈ H : ψ(y) >pi ψ(x)}. Clearly it is enough to show |A| = |B|. We do that proving that
ϕ(A) ⊆ B and ϕ(B) ⊆ A. If i ∈ A, then we have x >pi y and thus, by the properties (4) and (5),
we get ψ(y) >ψpiρ0 ψ(x). But since (ϕ,ψ, ρ0) ∈ StabU (p), we have that ψpiρ0 = pϕ(i) and thus
ψ(y) >pϕ(i)

ψ(x), that is, ϕ(i) ∈ B. Next let i ∈ B, that is, ψ(y) >pi ψ(x). Arguing as before, we
get x = ψψ(x) >pϕ(i)

ψψ(y) = y, which means ϕ(i) ∈ A.
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Given x, y ∈ N with x 6= y, a chain γ for Σν(p) (or a Σν(p)-chain) from x to y is an ordered
sequence x1, . . . , xl, with l ≥ 2, of distinct elements of N such that x1 = x, xl = y, and, for every
j ∈ {1, . . . , l − 1}, (xj , xj+1) ∈ Σν(p). The number l − 1 is called the length of the chain, x its
starting point and y its end point.

Consider then the following relation on N ,

ΣCν (p) = {(x, y) ∈ N ×N : there exists a Σν(p)-chain from x to y}, (21)

and note that ΣCν (p) ⊇ Σν(p).

Lemma 20. ΣCν (p) is asymmetric and transitive. Moreover, for every x, y ∈ N , (x, y) ∈ ΣCν (p) if
and only if (ψ(y), ψ(x)) ∈ ΣCν (p).

Proof. Let us prove first that ΣCν (p) is asymmetric. Let (x, y) ∈ ΣCν (p). Then, there exists a Σν(p)-
chain from x to y, that is, there exist l ≥ 2 distinct x1, . . . , xl ∈ N such that x = x1, y = xl and,
for every j ∈ {1, . . . , l− 1}, xj >ν xj+1. Assume, by contradiction, that (y, x) ∈ ΣCν (p). Then there
exist m ≥ 2 distinct y1, . . . , ym ∈ N such that y = y1, x = ym and, for every j ∈ {1, . . . ,m − 1},
yj >ν yj+1. Consider now the set A = {j ∈ {2, . . . ,m} : yj ∈ {x1, . . . , xl−1}}. Clearly, because
ym = x1, we have m ∈ A 6= ∅. Let us define then m∗ = minA, so that there exists l∗ ∈ {1, . . . , l−1}
such that ym∗ = xl∗ . Then it is easy to check that xl∗ , xl∗+1, . . . , xl, y2, . . . , ym∗ is a sequence of at
least three elements in N , with no repetition up to the xl∗ = ym∗ , which is a cycle in Σν(p) and
the contradiction is found.

Let us prove now that ΣCν (p) is transitive. Let (x, y), (y, z) ∈ ΣCν (p). Then, by the definition
of ΣCν (p), there exist l ≥ 2 distinct x1, . . . , xl ∈ N such that x = x1, y = xl and, for every
j ∈ {1, . . . , l− 1}, xj >ν xj+1; moreover, there are m ≥ 2 distinct y1, . . . , ym ∈ N such that y = y1,
z = ym and, for every j ∈ {1, . . . ,m− 1}, yj >ν yj+1. Consider then the sequence γ of alternatives
x1, . . . , xl, y2, . . . , ym. We show that those alternatives are all distinct. Assume that there exist
i ∈ {1, . . . , l} and j ∈ {1, . . . ,m} with xi = yj . Then we have a Σν(p)-chain with starting point
xi and end point y as well as a Σν(p)-chain with starting point y and end point yj = xi, that is,
(xi, y) ∈ ΣCν (p) and (y, xi) ∈ ΣCν (p), against the asymmetry. It follows that γ is a chain from x to
z, so that (x, z) ∈ ΣCν (p).

We are left with proving that (x, y) ∈ ΣCν (p) if and only if (ψ(y), ψ(x)) ∈ ΣCν (p). Let (x, y) ∈
ΣCν (p) and consider l ≥ 2 distinct x1, . . . , xl ∈ N such that x = x1, y = xl and, for every j ∈
{1, . . . , l − 1}, xj >ν xj+1. Defining, for every j ∈ {1, . . . , l}, yj = ψ(xl−j+1) and using Lemma 19,
it is immediately checked that ψ(y) = y1, ψ(x) = yl and that, for every j ∈ {1, . . . , l−1}, yj >ν yj+1.
In other words, we have a ΣCν (p)-chain from ψ(y) to ψ(x), that is, (ψ(y), ψ(x)) ∈ ΣCν (p). The other
implication is now a trivial consequence of |ψ| = 2.

In what follows, we write x ↪→ν y instead of (x, y) ∈ ΣCν (p) and x 6↪→ν y instead of (x, y) /∈ ΣCν (p).
As consequence of Lemma 20, for every x, y, z ∈ N , the following relations hold true: x 6↪→ν x;
x ↪→ν y implies y 6↪→ν x; x ↪→ν y and y ↪→ν z imply x ↪→ν z; x ↪→ν y is equivalent to ψ(y) ↪→ν ψ(x).

Define now, for every z ∈ N , the subset of N

Γ(z) = {x ∈ N : x ↪→ν z}.

Note that z /∈ Γ(z) and that it may happen that Γ(z) = ∅. This is the case exactly when, for every
x ∈ N , the relation x >ν z does not hold. Define now the subset of N

Γ =
⋃
z∈N [Γ(z) ∩ Γ(ψ(z))].

This set represents those alternatives x ∈ N from which we can reach, by a Σν(p)-chain, both z
and ψ(z), for some z ∈ N. Our idea is that Γ collects those alternatives which necessarily belong to
the superior half part of each vector in SU2 (p), because the majority relations implied by p oblige
them. Symmetrically, ψ(Γ) collects those alternatives which necessarily belongs to the inferior half
part of each vector in SU2 (p). To make that fact explicit we proceed by steps.
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Lemma 21. Let x, y ∈ N. If y ∈ Γ and x ↪→ν y, then x ∈ Γ.

Proof. Let x, y ∈ N and x ↪→ν y with y ∈ Γ. Thus, there exists z ∈ N such that y ↪→ν z and
y ↪→ν ψ(z). By transitivity we conclude that also x ↪→ν z and x ↪→ν ψ(z), that is, x ∈ Γ.

Lemma 22. The following facts hold true:

i) Γ ∩ ψ(Γ) = ∅;

ii) if n is odd, then x̂k /∈ Γ ∪ ψ(Γ). Moreover, if x ∈ Γ, then x̂k 6↪→ν x;

iii) for every x ∈ N , |{x, ψ(x)} ∩ Γ| ≤ 1.

Proof. i) Assume that there exists x ∈ N with x ∈ Γ and x ∈ ψ(Γ). Since |ψ| = 2, this gives
ψ(x) ∈ Γ, so that there exist z, y ∈ N with

x ↪→ν z, x ↪→ν ψ(z), ψ(x) ↪→ν y, ψ(x) ↪→ν ψ(y). (22)

By Lemma 20 applied to the second and fourth relation in (22), we also get

z ↪→ν ψ(x), y ↪→ν x. (23)

From (22) and (23) and by transitivity of ↪→ν , we deduce that ψ(x) ↪→ν x and x ↪→ν ψ(x), against
the asymmetry of ΣCν (p) established in Lemma 20.

ii) Assume that x̂k ∈ Γ ∪ ψ(Γ). Then, by i), we have x̂k = ψ(x̂k) ∈ Γ ∩ ψ(Γ) = ∅, a
contradiction. Next let x ∈ Γ and x̂k ↪→ν x. Then, by Lemma 21, we also have x̂k ∈ Γ, a
contradiction.

iii) Assume there is x ∈ N such that both x and ψ(x) belong to Γ. Then x ∈ ψ(Γ) and so
x ∈ Γ ∩ ψ(Γ) = ∅, against i).

Lemma 23. Let n be odd and x ∈ N . Then:

i) x ↪→ν x̂k implies {x, ψ(x)} ∩ Γ = {x};
ii) x̂k ↪→ν x implies {x, ψ(x)} ∩ Γ = {ψ(x)}.

Proof. i) From x ↪→ν x̂k, we get x ∈ Γ(x̂k) ⊆ Γ and thus Lemma 22 i) gives ψ(x) /∈ Γ. It follows
that {x, ψ(x)} ∩ Γ = {x}.

ii) From x̂k ↪→ν x, using Lemma 20, we obtain ψ(x) ↪→ν x̂k and i) applies to ψ(x), giving
{x, ψ(x)} ∩ Γ = {ψ(x)}.

Given X ⊆ N , define

Cν(p,X) = {f ∈ L(X) : f ⊇ Σν(p) ∩ (X ×X)} .

Note that Cν(p,N) = Cν(p). Note also that if Y ⊆ X ⊆ N and f ∈ Cν(p,X), then the restriction
of f to Y belongs to Cν(p, Y ).

For every j ∈ K, consider {x̂j , ψ(x̂j)}∩Γ. By Lemma 22 iii) the order of this set cannot exceed
1. Define then the sets

J = {j ∈ K : |{x̂j , ψ(x̂j)} ∩ Γ| = 1}, J∗ = {j ∈ K \ J : |{x̂j , ψ(x̂j)}| = 2}.

Of course, for every j ∈ K \ J , {x̂j , ψ(x̂j)} ∩ Γ = ∅. Note also that, when n is even, we have
J ∪ J∗ = K; if n is odd, by Lemma 22 ii), we have J ∪ J∗ = K \ {k}. For every j ∈ J , let us call yj
the unique element in the set {x̂j , ψ(x̂j)} ∩ Γ so that Γ = {yj : j ∈ J}.

Consider now the subset of N defined by

T = {yj : j ∈ J} ∪
⋃
j∈J∗{x̂j , ψ(x̂j)}
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and note that T ⊇ Γ. We consider the relation Σν(p) ∩ (T × T ). That relation is acyclic, because
included in the acyclic relation Σν(p), and thus we have Cν(p, T ) 6= ∅. Let f ∈ Cν(p, T ) and for
j ∈ J∗, let yj be the maximum of {x̂j , ψ(x̂j)} with respect to f, so that yj >f ψ(yj). Define

M = {yj : j ∈ J ∪ J∗}.

Observe that if n is even, then M ∪ψ(M) = N ; if n is odd, then M ∪ψ(M) = N \ {x̂k}. Moreover,
we have |M | = bn2 c, M ∩ ψ(M) = ∅ and Γ ⊆ M ⊆ T . The restriction of f ∈ Cν(p, T ) to M is a
linear order g ∈ Cν(p,M), say

g =
[
a1, . . . , abn2 c

]T
,

where M = {a1, . . . , abn2 c}. Finally, consider the linear order on N given by

q =


[
a1, . . . , abn2 c, ψ

(
abn2 c

)
, . . . , ψ(a1)

]T
if n is even[

a1, . . . , abn2 c, x̂k, ψ
(
abn2 c

)
, . . . , ψ(a1)

]T
if n is odd,

(24)

and prove that q ∈ SU2 (p). Note that in the upper part of q there are the alternatives in M and in
the lower one those in ψ(M); in the odd case, the fixed point x̂k of ψ is ranked in the middle, at
the position k = n+1

2 .
By construction, we have that ψqρ0 = q, which implies, due to the regularity of U , that q ∈

SU1 (p). As a consequence, we have that, for every x, y ∈ N ,

y >q x if and only if ψ(x) >q ψ(y). (25)

Indeed, by (4) and (5), we have

y >q x ⇔ y >ψqρ0 x ⇔ x >ψq y ⇔ ψ(x) >q ψ(y).

In order to complete the proof we need to show that q ∈ Cν(p), that is, that for every x, y ∈ N ,
x >ν y implies x >q y. Since when n is even we have N = M ∪ ψ(M) and when n is odd we have
N = M ∪ ψ(M) ∪ {x̂k}, we reduce to prove that, for every x, y ∈M :

a) x >ν y implies x >q y;

b) x >ν ψ(y) implies x >q ψ(y);

c) ψ(x) >ν ψ(y) implies ψ(x) >q ψ(y);

d) ψ(x) >ν y implies ψ(x) >q y,

and, in the odd case, showing further that, for every x ∈M :

e) x >ν x̂k implies x >q x̂k;

f) x̂k >ν x implies x̂k >q x;

g) ψ(x) >ν x̂k implies ψ(x) >q x̂k;

h) x̂k >ν ψ(x) implies x̂k >q ψ(x).

Fix then x, y ∈M and prove first a), b), c) and d). Note that x 6= ψ(x) and y 6= ψ(y), because we
have observed that if ψ admits the fixed point x̂k, then x̂k /∈M.

a) Let x >ν y. Since g ∈ Cν(p,M), we have x >g y and then also x >q y.

b) By the construction of q, for every x, y ∈M, we have x >q ψ(y).

c) Let ψ(x) >ν ψ(y). Then, by Lemma 19, we also have y >ν x and by a) we get y >q x, which
by (25) implies ψ(x) >q ψ(y).
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d) Let us prove that the condition ψ(x) >ν y never realizes. Indeed, assume by contradiction
ψ(x) >ν y. Then, by Lemma 19 we also have ψ(y) >ν x. If y ∈ Γ, then, by Lemma 21, we
have ψ(x) ∈ Γ ⊆ M and thus x ∈ M ∩ ψ(M) = ∅, a contradiction. Thus, we reduce to the
case y 6∈ Γ. If x ∈ Γ, then, again by Lemma 21, ψ(y) ∈ Γ ⊆ M and we get the contradiction
y ∈M ∩ψ(M) = ∅. If instead x 6∈ Γ, then x, ψ(x), y, ψ(y) ∈ T . As a consequence, ψ(x) >ν y
implies ψ(x) >f y and ψ(y) >ν x implies ψ(y) >f x. Moreover, as y is the maximum
of {y, ψ(y)} with respect to f, we also have y >f ψ(y). By transitivity of f , we then get
ψ(x) >f x, which is a contradiction because x is the maximum of {x, ψ(x)} with respect to
f .

Assume now that n is odd. Then fix x ∈M and prove e), f), g) and h).

e) This case is trivial, because, by the construction of q, for every x ∈M , we have x >q x̂k.

f) Let us prove that it cannot be x̂k >ν x. Assume, by contradiction, x̂k >ν x. Then, by Lemma
23 ii) we get ψ(x) ∈ Γ ⊆M, against M ∩ ψ(M) = ∅.

g) Let us prove that it cannot be ψ(x) >ν x̂k. Assume, by contradiction, ψ(x) >ν x̂k. Then, by
Lemma 23 i), we get ψ(x) ∈ Γ ⊆M against M ∩ ψ(M) = ∅.

h) This case is trivial because, by the construction of q, we have x̂k >q ψ(x) for all x ∈M.
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