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THE EXPERIMENTAL INVESTIGATION
OF DISORDERED STRUCTURES
n

In order to discover the distribution functions of §2.3 or to test the appli-
cability of the models in §§2.5 and 2.6 the structure of real matter must be
studied experimentally. This is almost always donc by scattering experiments
which are interpreted with diffraction theory. There are many standard
works and valuable articles concerning this field (James 1962, Guinier 1963,
Waseda 1980, Guinier and Fournet 1955, Lovesey 1984, Pings 1968, Bacon
1975, International Tables for X-ray Crystallography 1962, Howe 1978) and
this chapter is intended to introduce the main ideas.

3.1 Scattered intensity

Some essential quantitics can be defined with the help of figure 3.1. hk,, hk,
arc the momenta of the photons, electrons or neutrons scattered by scatter-
ing centres inside the sample. One of these is chosen as the origin O; another
is at P, distant R, from O. We immediately make some assumptions, namely,
the scattering is clastic so |k,»] = |kf|, more than onc scattering event in the
sample is so improbable that only single scattering need be considered. These
assumptions by no means always hold but the formulae resulting from them
arc indispensgple starting points. We define as follows the momentum trans-
fer vector, Q, and the connection with the scattering angle, 0:

hQ = h(k, — k)) |Q| = 2k sin 10. (3.1)

We assume the incident waves are unpolarised.

If there is an isolated scattering centre at O the scattered wave has the form
(/(0)/r) expli(kr — wt)] where r is the distance in the 0-direction. Waves
from P and other scattering centres arrive at the distant detector with differ-
ent phases because of their various path lengths. The phase difference for
waves from O and P is Q + R, conscquently the intensity at the detector is

1(Q) = A1) fx(Q) exp(iQ * Ry) (3.2)

where the sum is over all the scattering centres such as P, and Q is used as
a variable instcad of 0; A is a proportionality constant. The quantity ]f(())[2
is a cross section and will depend on the nature of the incoming waves and
of the scattering centre; f(0) is a scattering amplitude.
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Figure 3.1 Decfinitions ol quantitics for the coherent scattering calculation

3.2 X-rays

X-ray radiation is scattered by clectrons and it is conventional to express
I(Q) in terms of the intensity scattered by a single clectron. A single clectron
at O would give

1(Q) = 4 ’ (3.3)

Q)

where | f.(Q)]* is the known cross section for an clectron.

What, for x-rays, is to be regarded as a ‘scattering centre’? Since clectron
wavefunctions give a continuous distribution of position probability it is
reasonable to take a volume element of sample, dr, containing clectron
charge en,(r) dr, as the scattering centre and replace the sum in cquation
(3.2) by an integral over the samplc. The scattering from dr then has ampli-
tude proportional to f(Q)n.(r) dr and, using cquation (3.3), wc have

2

1.(Q) = (Q)/I(Q) = Jﬂc(r) exp(iQ - r) dr (3.4)

where n,(r) is the total clectron number density and the quantity in equation
(3.4) is called the intensity in the Q-direction in clectron units.

Even in metals, where the conduction electron wavefunctions permeate the
entire sample, the charge density still resembles that of a sct of scparate
atoms to a very good approximation. We therefore divide expression (3.4)
into contributions from N identical fixed spherical atoms with centres at
{R;}. Then

N
n(r) = 3. ne(r — R) (3.5)
i=1
where n,(r — R)) is the clectron density in the /th atom at a distance (r — R))
from its centre and

N 2

1.(Q) = U Y. nr — R) exp(iQ - r) dr| . (3.6a)

i=1

3.2 X-RAYS 57

If we multiply and divide under the summation by exp(iQ * R)), this becomes

1.(Q) = ';CXP(iQ‘RD | (D (3.60)
where
Q) = J nea(r) exp(iQ - r) dr. “ (3.60)

L.(Q) is an ‘importunl quantity known as the atomic scattering factor in
clectron units. It is known and tabulated (International Tables Sor X-ray
Crystallography 1962) and will not be discussed in detail (see figure 3.2).

Scattering factors

Q"

Figure 3.2 Single-centre scatlering factors for: clectrons by atoms ( /°), ncutrons by

magnetic ions ( /™*¥), x-rays by atoms ( f), and ncutrons by nuclci (b) (from Waseda
1980).

Equation (3.6) achicves a separation of the intensity into two factors one
characteristic of the atoms and the other depending on where they are. The
latter factor may be written as

N

Y exp(iQ - R)

i=1

2

= NS(Q) (3.7

which defines S(Q), the structure factor. S(Q) will claim a lot of attention. Let
us first relate it to equation (2.2a) for v("(r). Since v(" is the density function
we expect, in analogy with cquation (3.4), that

2

1.(Q) = | (D) (3.8q)

fv“’(r) exp(iQ *r) dr
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and from cquations (3.65) and (3.7)
NS(Q) = Jv‘”(r,) exp(iQ - r)) dr, x Jv(”(rz) exp(—iQ - r,) dr,. (3.8h)

By substituting equation (2.2a) into (3.8b), equation (3.7) is readily recap-
tured. If we now rewrite equation (3.86) as

NS = [V expliQ - e, )
and change the variables so that r,—r’, ¥, — r, —» r we have
NS(Q) = Jle(r) exp(iQ *r) dr (3.9q)
where
P,(r) = Jv“’(r +r )W) dr. (3.90)

P,(r) is called the autocorrelation function of the atomic positions.

There is no statistical mechanics in this so far. The structure, represented
by S(Q), is that of a fixed array. We could calculate S(Q) from {R,}, taking
the {R;} from one of the models in the previous chapter. Model S(Q) have
been found this way. If the model is big enough it will contain many different
local configurations and its S(Q) will approximate more or lcss to the
configuration average which a scattering experiment would obtain for a real
material.

3.3 The average S(Q) for a real sample

To find the ensemble or configuration average of S(Q) we need that of P.(r)
for use in equation (3.9a4). We now show that (P,(r)) is related to the g(r)
of equation (2.7).

Now, from equations (3.9b) and (2.2a) we have

P(r) = f 20 +r —R)Y 5(r' —R)dr' =Y 5(r + R, —R).
i J ij
Put R; = R, and sum over i using R, as origin (scc figure 3.3). This gives
L, 6(r — R;) which is the density function at a distance r away [rom the point
R, — a at which there is also a particle. The average of this is cxactly the
function z(r) in cquation (2.8). Similarly for R, = R,, R, = R, ctc, giving N
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Figure 3.3 Decfinitions of quantities.

similar terms. Thus finally,

(Py(r)) = Nngg(r) + &(r))

S(Q))>=N"" f (Py(r)) exp(iQ - r) dr
= J[n()(g(r) = 1) + ny + 6(r)] exp(iQ - r) dr

= noj (g(r) — 1) exp(iQ * r) dr.+ (2m)°nd(Q) + 1. (3.10)

To rcach cquation (3.10) we have used the propertics of the §-function,
notably ‘

o(Q) =(2n) ~ 3fcxp(iQ - r) dr.

There is also a tacit assumption that the volume V is a representative subsec-
tion of an infinite volume with uniform properties rather than a finite sample
with a bounding surface. The §(Q) term implies a strong scattering intensity
in the forward direction with |Q] =0 = 0. This peak would fall in the incident
beam and not be observed in practice but should in any case be replaced by
another term which arises as follows. Strictly, when dr’ goes over the sample
volume during integration, v("(¢’ + r) falls to zero outside the body and the
exact value of integral depends on the shape and size of the sample. In
Guinier (1963) it is shown that the second term of cquation (3.10) becomes

nyV !

ja(r) exp(iQ - r) dr ’

where a(r) = | inside and 0 outside the sample. This term does not contain
information about the structure and it is negligible unless Q is very small in
which event 0 would be too near the incident direction for observation. Thus
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to a very good approximation
(S(Q)) =1+n J(g(r) — 1) exp(iQ * r) dr. (3.11a)
For an isotropic material—which most disordered substances arc—

(S(Q))—-»(S|Q\) which is often written S(Q) with the averaging bracket
tacitly assumed, g(r) — g(r), and

S(Q) =1 +n, J (2(r) — 1) Q’ r2dr. (3.11b)
Finally,
1.,(Q) = N|/.[’S(Q) (3.11¢)
and
S(Q) > 1as Q — 0. (3.11d)

3.4 The importance of the structure factor

In crystals, S(Q) gives the Bragg peaks and is at the foundations of crystal-
lography. For materials without LRO, equation (3.11b) cnables g(r) to be
found if S(Q) is inferred from the observed intensity—though this inference
is not without difficulty (§3.8). In any cvent, the Fourier transformation of
equation (3.115) gives

g =1+ f 5@ =2 402 dg. (3.12)
0 Qr

87 n,
The structure factor is therefore the route to the pair distribution, the RDF
and the coordination number.

S(Q) and g(r) have strong connections with many theoretical functions in
statistical mechanics, c.g., in liquid state theory the pressurce is

d
1):)10kBT—£113Jq())—i{)@ dr (3.13)

where ¢(r) is the interatomic potential (§4.3).

As we have already seen S(Q) can be calculated for computer or other
models in order to compare with observed S(Q). In theories of clectronic and
many other properties of liquid metals or semiconductors, S(Q) is almost
invariably required and its measured value is used for numerical calcula-
tions.

In all these applications S(Q) or g(r)—which we have scen to be intercon-
vertible—carry the structural information. Becausc of the single-scattering
assumption and the usc of diffraction thecory only the interparticle distance
vectors were involved in the intensity expression, equation (3.2). Becausc
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there are no periodicities or preferred directions in the structure, only
the distribution of interparticle distances, i.c. g(r), can be inferred. Scattering
experiments do not determine g9, g® etc. This is a considerable limitation.

Before giving examples of the practical use of these formulae two general-
isations arc required, firstly to mixtures of different atomic species and sec-
ondly to waves other than x-rays.

3.5 Formulac for binary mixtures

Returning to the amplitude summation in equation (3.2) and treating the
atoms as scattering centres we may rewrite it for a binary system as

2
Q) =4 ;f/\ (Q) exp(iQ * RYY) + XI:fu(Q) exp(iQ - R”)|  (3.14)

where two types of atom, A and B, each have their characteristic scattering
factors. The two sums arc over the N, A atoms and Ny B atoms respectively.
It is clear that the intensity will have terms in f2, /3 and 2f, f associated
with A-type, B-type and AB-type structure factors. These terms introduce
partial structure factors S;, which are related by a Fourier transformation
like equation (3.12) to the partial pair distributions introduced in §2.4. The
results for a homogencous isotropic binary material follow from the same
rcasoning as that of §§3.2 and 3.3 and are:

1..(Q) = NF(Q) (3.15q)
HQ) = fA(CACn + CASAA(Q)) +fB(cACB + C|23SBB(Q))
+ 2fafucacs(San(@) — 1) ‘ (3.15b)
Sy= 1+, Jm(g,;,(r) oy SnOr g, (3.15¢)
0
N 1 _ sin Qr
gi(r) =1+ 87 J(S,»,(Q) ) — or 4nQ*dQ (3.15d)

San = Spa (3.15¢)
g = (Np+ Ny)/V ¢;=N,/N i,j=AorB. (3.15)

When ¢, =1, ¢3 =0, cquation (3.15) reduces to the formulae of §3.3.
Equation (3.15¢) is the definition of the partial structure factor in terms of
the partial pair distribution and Icads to the expression (3.15b) for the inten-
sity. Other definitions of the partial structure factors arc conceivable with
corresponding intensity formulae (see §3.12). Equation (3.15¢) results from
cquation (2.14b).
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3.6 Incoherent and inclastic scattering

Scattering can be cohcrent or incoherent, clastic or inclastic. Cohcerent scat-
tering is that for which the angular dependence of the intensity is determined
by the interference of scattered wavelets from different scattering centres. It
depends on the structure factors. The incoherent scattering has an angular
dependence affected only by the intrinsic cross scctions of the scattering
centres and not by their relative positions. Let us label EC, 1c, EI and 1
the pairings clastic-coherent, inclastic-coherent, clastic-incoherent and
inclastic-incoherent, respectively.

The x-ray scattering in cquation (3.11¢) is type c. In equation (3.15) for
the binary system there are EC-type and El-type terms. The latter may be
written cacy(fa —fu)> or /) — {f)* where {x) = caxa + cpxy. X-rays
are subject to Compton scattering which can be shown to be of type 11.

For measuring structurc factors, incoherent and inclastic scattering have a
certain amount of nuisance value though they are interesting in their own
right. For example, Compton scattering has to be subtracted from the ob-
served intensity before processing the data. This point recurs in neutron
scattering.

3.7 Neutron and electron scattering

An aspect of nuclear reactor technology is the provision of monoencrgetic
neutron beams in wavelengths suitable for crystallography. The formulac of
the preceding sections are used except that the atomic scattering factor f,(Q)
is replaced by an appropriate quantity representing ncutron scattering by the
nucleus. This quantity is the scattering length, b, which is rclated to the
bound-atom cross section, a,, by o, = 4rnb?. Only s-wave scattering is impor-
tant at the energies involved (Bacon 1975) and this is isotropic (figure 3.2).

Neutron scattering is considerably more complicated than x-ray scatter-
ing, however. A chemically pure sample is not necessarily isotopically pure.
If there were two isotopes with scattering lengths by, b,, we should expect an
equation like (3.15b) to apply. However, there would be only one structure
factor to consider since the atomic distribution is determined by chemical not
nuclear effects. The three S-terms thercfore reduce to (b )*S and the inco-
herent term to {b?) — b )2 In other words a weighted mean scattering
length deals with isotopic mixtures. However, the incoherent term will be
present even in an - isotopically pure sample becausc the system (nu-
cleus -+ neutron) can exist in two spin states with different b. An incoherent
term of the form (b? >> — (b )?* ariscs from the relative weight of the two
spin states. The meaning of b, written without brackets, will therefore be
extended to stand for a mean scattering length weighted for both isotopic
mixture and spin states. (b ) will mean ¢ bp + by as in §3.6.
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More scrious still is the inclasticity of neutron scattering. The important
quantity is not really S(Q) but S(Q, w) where hw is the energy lost by the
neutron in its collision. Mechanics gives

, ) mw 2mw\'?
LY I Pt I B idiand ] @
Q ,[ 2 <l hk?) cos 0 (3.16)

where fik; is- the initial momentum of the neutron. If w =0 and k, =k,
cquation (3.16) reduces to cquation (3.1), and this is valid for x-radiation
because the energy transfers are very small. In neutron practice, however, 0
alonc does not define Q uniquely and a detector receiving at an angle 0
{‘)ccords a coherent intensity, nor Nb2S(Q) in analogy with equation (3.11c),
ut
Ei/h

I(0) = Nb? J D(ky) %S(Q, w) dw (3.17)

- 0

where the integral has the following meaning. It integrates over all the ener-
gies of the incoming neutrons with a weighting factor, D(k,), expressing the
cfficiency of the detector as a function of neutron speed. Since the observable
is the counting rate, the factor k/k; is required because the rate is propor-
tional to the speed of arrival. If the effective spread of w were small enough
for k; to be essentially constant—the so called static approximation—the
coherent intensity from an element becomes proportional to Nb2S(Q). This
is not really good enough in practice and there are methods of correcting for
inclastic scattering. In the terms of §3.6, ncutron scattering has Ec, IC, EI and
Il contributions. The underlying theory can be pursued in Lovesey (1984)
and Howe (1978).

Because of its magnetic moment a neutron can also be scattered by a
magnctic interaction with unpaired clectron states or spins. The cross section
for this resembles f, in that it depends on the atomic structure (figure 3.2).

Electrons are scattered by the screened Coulomb fields of the atoms. The
scattering factor, f,(Q), is related to the f,(Q) for x-rays because of the
clectrostatic conncction between field and charge density (sce figure 3.2). The

relation is
8 2 (7 — f
fu(@) = Sme <‘ Q’E‘Q)>. (3.18)

~ Electrons arc subject to inclastic and multiple scattering cspecially in higher-

Z clements. They arce suited to measurements on thin amorphous layers. An
example with a technical description is given in Leung and Wright (1974).
3.8 Some experimental considerations. Pure samples

The preceding sections show that the single scattering cross section and
the structure factors arc two of the influences that determine the observed
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intensity. A third influence s a whole varicty of extrancous phenomena that
have to be corrected for as part of the data processing. Exactly how to do the
corrections has to be thought out for cach experiment and can be found in
original papers. The problem is mercely illustrated by the following discussion
which is far from cxhaustive.

Consider the following formulac for x-ray, ncutron and clectron obscrved
intensities:

I°%(Q) (x-ray) = afPN([3S(Q) +/X(Q) + &) (3.194)

1°°*(Q) (neutrons) = affN {[b2n(S(Q) + p(Q)) + bi,(1 + p(Q)] + A} (3.195)
I°°%(Q) (electrons) = affN( /4 S(Q) + /7 + A) + Lupsrare: (3.19¢)

The factor o corrects for the effect on the intensity of absorption in the
sample and its container if any. It depends on the material and geometry and
is well known for standard cases, e.g. cylindrical samples in cylindrical cells
(Waseda 1980). P refers to the polarisation of x-rays and depends on what-
ever reflections are imposed on the rays by the instrumental design.

/. refers to the inclastic incoherent Compton scattering and its known
theoretical value can be inserted. f7, referring to the inclastic scattering of
clectrons, must also be inserted. In both cases the cffect is not necessarily
very large and can be removed by extra instrumentation, ¢.g. by putting a
velocity filter or monochromator in the scattered beam to reject electrons or
photons which have lost cnergy.

A is for multiple scattering which was excluded from the discussion in §3.1.
It is small and is sometimes neglected for x-rays, but it is morc serious

with electrons and ncutrons. In ncutron scattering A is isotropic and can.

be subtracted (Howe 1978). The factors p(Q) in equation (3.19b4) arc the
corrections for inelastic neutron scattering. These are small for heavy ele-
ments but are serious at low Z (Howe 1978, Dahlberg and Kunsch 1983).
Lipsirate 1N equation (3.19¢) is the intensity scattered from the foil or substrate
on which the very thin samples required in clectron diffraction are often
supported.

There remains the product fN which converts the factors /2 and A2 which
are expressed in absolute units into the observed counting rates. This is quite
a difficult matter. S(Q) - 1as Q — oo and it will be scen in §3.12 that
S(0) = norky T where k4 is the isothermal compressibility. If cither or both
these limiting valucs were inserted in cquation (3.19) with the observed valuce
of I(Q) for very large or very small Q, fIN could be calculated. This is
somewhat unsatisfactory because high- and low-Q arc the ranges in which
I(Q) is least accurate: with x-rays and clectrons the scattered intensity is
small at high Q. Nevertheless versions of this method have been used one of

/ l ! l / ' I ] l ) | I ' J
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which is, from cquation (3.194),

5] Q2 -1
BN = . (fi+/i+4)dQ ((aP) f 'J 1°%(Q) dQ) (3.20a)
| 2, /
where Q) is a fairly high value, say, 8 A~ !, and Q,is the obscrvc‘a upper limit
of Q which might be 15A ", S(Q) ~ 1 in the numerator. Alternatively, use
can be made of the fact that the Fourier transform of S(Q) is g(r) (equation
(3.12)) and that for r —» 0, g(r) = 0 because of the mutual impenetrability of
atoms. This leads to (Waseda 1980, Pings 1968)

23] 2 =
W= [ 102+ ) dg — 20 (@n = [* 1o d0).
(3.208)

In neutron experiments this problem can be solved another way because

the scattering from the element vanadium is over 99 % incoherent and is
consequently isotropic. A solid vanadium replica substituted for the sample
will give scattering according to equation (3.19b) with N and 42 known and
the coherent term negligible. This gives # which will apply also to the sample.
N and./)2 for the latter must be known to extract S(Q) from the sample
scattering (North et al 1968).
A These numerous corrections, and others nqt referred to, are applied to
mtc.nsilics observed in ecither reflection or transmission with diffraction
cquipment or, if S(Q, w) is required, with neutron spectrometers (see figure
3.4). Typically, unless special measures are taken, ~0.5<Q < ~12A-1,
Good mcasurements of S(Q) might achieve an overall accuracy at the first
pcak of about 42 %: there are examples in §3.11. Modern radiation
sources, like synchrotrons for x-rays and spallation neutron sources, are
extending observable Q-values to 40 A~ and more (White and Windsor
1984, Biggin 1986).

3.9 From S(Q) to g(r)

Assuming the best S(Q) has been extracted from 1°°(Q), one use for it is to
ovbluin &(r) from cquation (3.12). Computing a Fouricr transform is a rou-
tine procedure but crrors in g(r) result from the limited range of Q over
which S(Q) can be measured and from the errors in S(Q) itsclf. Probably the
most scrious matler is the truncation of S(Q) at Q,... This mcans that
cquations like (3.12) and (3.154) have in their intcgrands a factor M(Q)
which is a step function of magnitude unity which cuts off to zero at
Q = Quax- The implication is that the transform will be a distorted g
containing spurious ripples particularly noticcable below the first pcak and
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Figure 3.4 (a) Layout of a triple-axis ncutron spectrometer for mcasuripg S(Q, w)
(for details scc Whitc and Windsor 1984; Biggin 1986). (b) Layout of cquipment for
measuring S(Q) by transmitted x-rays (from Van der Lugt 1979).
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these can lead to erroncous structural inferences. Error analysis and correc-
tion techniques have been devised (Kaplow et al 1965, Wright 1974). One of
these involves transforming S(Q) and g(r) cyclically into one another and
removing obvious truncation errors from g(r). This operation continues until
g(r) is zero and devoid of spurious ripples at small r, but will also transform
into an S(Q) which agrees with the observed one within cxpcrin‘fcntal error.
However, this is not the only approach and may be criticised on the grounds
that g(r) is not nccessarily zero at small r if inferred from x-rays scattered by
clectrons. There is really no substitute for non-cxistent data and the removal
of spurious ripples from g(r) can only be achicved by sacrificing something
clsewhere. Some workers prefer to do this by using an M(Q) which is not a
step function but a more gentle cut-off such as

M(Q) = sin(mQ [ Quma) [(TQ | Qumax)-

This certainly reduces spurious ripples but broadens somewhat the peaks in
the transform, i.c., it spoils the resolution.

3.10 Binary systems and isotopic substitution

It is possible to Fourier transform the intensity from the binary system to
obtain a total pair distribution function, g(r). From equations (3.15b) and
(3.15d), k.

Q) = (/*) = T e, fifiSy =D (321a)

and if we Fourier transform this according to equation (3.15d) there results

1
F— f(F(Q) - LM %QC 4nQ*dQ = L: o fif(gy —1). (3.21b)
Let us define g(r) by
2 Wge) =D =3 e fiflgy — 1) (3.210)

Equation (3.215) then shows how g(r) can be found from the observed
HQ).

It is by no means impossible to make useful inferences from g(r) obtained
in this way but it would clearly reveal more if the three g;’s could be mea-
sured scparately.

Since the three S;; are independent, three separate determinations of /(Q)
arc required to measure them with three distinctly different ratios of f, to f.
Varying ¢, ¢ is not an alternative because in general Sj; varics with c.
Except for the special case of anomalous dispersion (Waseda 1980), f(Q) for
X-rays is not itself open to variation though onc could substitute one or both
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clements by others which do not aflect the structure. This is ‘isomorphous
substitution’, ¢.g., substitute Zr for Hf in amorphous NiHf alloys (Wagner
1980). Alternatively three different radiations (x-rays, clectrons, ncutrons)
could be used on the same mixture. A third possibility is to alter the neutron
scattering lengths by changing the isotopic abundances in a mixture of fixed
chemical composition (isotopic substitution).

This kind of programme was first envisaged by Keating in 1963, and first
implemented by Enderby, North and Egelstafl in 1966 (Enderby et al 1966).
Since then the method of isotopic substitution has been exploited, especially
by Enderby and co-workers, to find S; and therefore g;; in liquid and amor-
phous alloys and semiconductors, molten salts and solutions. Sometimes a
combination of ncutron, with x-ray or clectron, scatlering cxperiments is
suitable.

Clearly the isotopic method is limited by the availability of suitable iso-
topes. The F(Q) resulting from the three experiments must be sufliciently
different to make the solution of the three simultancous cquations for §; a
practical possibility (Edwards et al 1975, Biggin and Enderby 1982). All the
errors and corrections involved in ncutron scattering will be present, en-
hanced by the necessity of combining three results. There are some interest-
ing possibilitics to exploit however. Since scattering lengths can be negative,
b for an element can be negative or zero and to some extent disposable if
isotopes can be mixed. An example is given in §3.11.

3.11 Examples of structurc investigations

A large number of examples arc given in Waseda (1980). In this section a few
are selected from the literature to illustrate the achicvements possible with
the mcthods outlined in the previous scctions.

X-rays in transmission were used by Greenficld ef al (1971) to provide
accurate tabulated structure factors for liquid Na and K. Points with Q-
values as low as 0.3 A~ ! werc observed and the result is shown in figurc 3.5.
Somewhat comparable work with ncutrons on simple liquid metals is re-
ported in North er al (1968) and these two papers provide an interesting
comparison of two techniques. The x-ray work on a simple non-metallic
liquid, Ar, over a large density range is described in Pings (1968) and part of
this is shown in figure 3.6. This shows that as the density decreases the
coordination number, defined as

r(peak)
2n, J p(r) dr
(

)
falls significantly. This reveals the important point that cxpansion rc-
organises the SRO, it does not merely increase the interatomic distances as it
would in a crystal.
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Figure 3.5 S(Q) from Greenficld et al (1971) for liquid Na.
<

. Onec type of non-simple liquid is molecular, like liquid CCl,. If the scatter-
ing from onc isolated molecule is known—which is often so for simple
moleccules—this information must supply part of the content of F(Q). An
assumption about the relative orientation of molecules in the liquid will
supply more. These two items, plus a single measurement of F(Q), go some
way towards distinguishing the three partial structure factors without requir-
ing isotopic substitution (Egelstaff ez a/ 1971a,b). The clement Ti has a small
ncgati.vc scattering length for neutrons and this circumstance enables g(r) of
cquation (3.21¢) to be uscful. For TiCl,

gr=140.004(g i — 1) +0.588(gcic) — 1) — 0.101(gricy — 1)-

Figure 3.7 from Enderby (1978) shows the effect of the g, term clearly with
a Ti—Cl intramolecular separation of 2.17 A. The examples of CCl, and
TiCl, illustrate inferences made without separate measurements of the par-
tial structure factors in binary systems.

The study of molten salts was advanced by the application of the isotopic
substitution method. Figure 3.8(«) shows F(Q) of equation (3.15b) measured
by Edwards et al (1975) for three liquid NaCl samples containing natural
Na but three isotopically different Cl anions. Because of the different CI
scattering lengths, the curves arc sufficiently different for the Sj; to be

[
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Figure 3.6 Data for Ar from Pings (1968) showing that the coordination numbq is
a function of density. Broken curves are theoretical estimates from the LJ potential.
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Figure 3.7 Endcrby’s total g(r) for TiCl, (from Endcrby 1978).
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Figure 3.8 (¢) F(Q) from Edwards et al (1975) for neutron scattering by NaCl. Top
curve, Na**Cl; middle curve, NaCl; bottom curve Na¥’Cl. The points are observed.
The lines are derived from the Sy A =c, b2 + ¢, b2. (b) Partial structure factors S,
for NaCl (from Edwards et al 1975). (c) Partial g; (from Biggin and Enderby 1982)
from the data of (@) and (b). Full curve, &naci(r); broken curve, gnuna(r); dotted
curve, gee(r).

resolved (figure 3.8(b)) and the S; can be transformed into g; (figure
3.8(c)). It is evident that the first shell of neighbours, given by the peak in
&naci, 18 of opposite electrical sign to that of the ion at the origin; the
coordination number is 5.8 + 0.1. The ge o and Znana Peaks coincide and
contain 13.0 + 0.5 sccond-ncarest neighbours. Above 5 A the charges cancel
onc another. Similaritics to and differences from crystalline NaCl are obvious.
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Clearly it would be impossible to infer such things from a single F(Q). Figure
3.9 shows the outcome for BaCl, (Edwards et al 1978). It is distinguished
from NaCl especially in that the gg,p, and g curves arc quite different,
partially because of the ionic charge difference but probably also because the
ions are not equally mobile.

glr)

r (A

Figure 3.9 g,(r) for BaCl, from Edwards et al (1978). Full curve, gy,ci(r); broken
curve, gaclr); dotted curve, gpapalr)-

Consideration of amorphous alloys of Ni and Ti illustrates the way in
which special expedients can be used to maximise the yield of information.
First we note that both Ni and Ti have isotopes both with b <0 and b > 0.
In principle therefore isotopes could be mixed to give either by =0 or
by; = 0; these are called null elements. With by; =0, cquation (3.15b) shows
that F(Q) would give Syyy; directly: similarly by = 0 would give Suini- A zero
alloy, i.e., one with cyiby; + cpibri = (b)) =0, could also be prepared as
could another alloy with Ab = by — by = 0. These last two alloys would
yield F(Q) which give directly the quantities called S, and Sy which will
be introduced in the next section and which, together with a third quantity,
Swe are altogether cquivalent to the three S Between them, Stiri> Sninis Dces
Snn give all the partial structure factors. At the time of writing this
programme has not been realised but neutron and x-ray scattering from
Ni,,Tig has been observed (Wagner 1980). In this material, because of
the relative sizes of the b, the x-ray F(Q) was dominated by Syy and the
neutron F(Q) by S... Snc exerted so small an effect that it was sufficient
to calculate it by an approximate theory. The result is shown in figure 3.10
and amounts to a very plausible solution of the partial structure factor

J | | | ! J | i
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Figure 3.10 Bhatia-Thornton structure factors for amorphous NigTigy. A, S.(Q)/
c1¢2; B, Sin(Q); C, Sne(Qus (from Wagner 1980).

problem in this alloy. From the corresponding g;; it could be inferred that Ni
had 9.3 Ti neighbours instead of the 7.7 it would have in a random mixture,
i.c., SRO existed (sec also §12.2).

As a final example we consider the archetypal glass, SiO,. One of the more
recent of many experiments used a time-of-flight ncutron spectrometer and
a pulsed neutron source (Misawa et al 1980). This took the Q-value up to
about 45 A ~'. Figure 3.11 shows the total radial distribution function ob-
tained by Fourier transforming (F(Q)/{b?) — 1). The interpretation of the

400 T T T T T T
Si0,
300 |
< 200F 5i-0
o
100
0 .{’A VA".VAVA 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6
r (nm)

Figure 3.11 The radial distribution junction of vitreous silica derived from the scat-
tering of ncutrons from a spallation source (from Misawa et al 1980).
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two prominent peaks is that they represent the Si-O and O-O distances of
0.1613 and 0.2628 nm respectively. The arcas of the peaks Icad to corre-
sponding coordination numbers 4 and 2. The widths of the peaks indicate the
variation in bond lengths. These results are clearly consistent with the Si-O
tetrahedral unit and crRN of §2.6 (sce also §10.6).

3.12 Different kinds of structure factor. Fluctuations

In §§3.5 and 3.11 it was mentioned in passing that the S, used so far are just
one set of possible partial structure factors. In this section we introduce
others and make the further points that when Q =0 the structure factor is
connected on the one hand with fluctuations and on the other with thermo-
dynamic quantities.

It will be convenient to use previous notations except that the superscript
will be dropped from the density function v(". ¥ now stands for a fixed
volume within a much larger amount of binary mixture and we must differ-
entiate between the fluctuating numbers N4, Ny and N of atoms in ¥ and
their averages (N, ) ctc. There will be corresponding instantancous and
average number densitics vy, 115 ctc.

Let

AVA(F) = VaA(r) —np =) 0(r — R{Y) —ny (3.22a)
3

and define the Fourier component Av,(Q) by

Ava(r) =V ! % va(Q) exp(—iQ +r) (3.22b)
then
Ava(Q) = jcxp(iQ " 1) Av(r) dr
= ; exp(iQ * R{Y) —ny J; exp(iQ + r) dr.
Similarly
Avg(Q) = ; exp(iQ * R{Y) — ny L exp(i@Q - r) dr
and

AV(Q) = AvA(Q) + Avy(Q) = ). exp(iQ * R) — ”oj exp(iQ - r) dr.

J=kd

(3.22¢)

| | I | J ‘ ‘
3.12 DIFFERENT KINDS OF STRUCTURE FACTOR 75

The new partial structure factor Sy (Q) will now be defined by

1

Sw(Q) = S AV(Q) *Av(Q) ). (3.23)

For a homogencous isotropic binary mixture Q — Q. In the limft 0=0,it
follows from cquation (3.22¢) that

1 {(AN)?)
San(0) = — (N = (N)DH =27
Nnl0) = s (N = (V) = S (324)
which is a statement of the mean-square fluctuation in the number N.

Bc'forc discussing Syy let us introduce S, and Sy.. For this we require the
definition

Ac(r) = (V/{ND)cgAva(r) — calvg(r)). (3.25a)

Ac is‘ an cxpression of the concentration fluctuations within ¥, and the
definition is reasonable because it ensures that, if the density fluctuations, Av,
qf cach component were proportional to their respective average concentra-
tions (i.c., the latter remain unchanged), Ac(r) would vanish. Ac(Q) is intro-
duced by

Ac(r) = % Ac(Q) exp( -iQs' r) (3.256)
and
Ac(Q) =V ! L Ac(r) exp(iQ - r) dr. (3.25¢)
Two more new structure factors are now defined as follows:
See = (NH{A(Q)*Ac(Q) ) (3.26)
Sne = RL{AVQ)*Ac(Q) ). (3.27)

Substitution into equations (3.26) and (3.27) from (3.22¢) and (3.25¢), tak-
ing the limit Q — 0, leads to

See(0) = (N H{(A)*) (3.28a)
Ac = (N [ey(Nao = {NAY) — caA(Ng — (NpD)] (3.28b)

and
Sne(0) =<ANACH. (3.29)

Inspcction of cquation (3.22¢) shows that the three new structure factors
contain the sum X, _, , exp(iQ * R) though it enters in different ways. Thus,
the same positional information is carried that is in equation (3.14), leading
to the structure factors S,. In fact, Bhatia and Thornton (1970), who
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introduced S.., Sxn and Sy in 1970, showed that the latter are lincar com-
binations of the S;. The lincar relations with the arguments Q omitted are

Snn = CaSaa t cBSee + 2CACBSAB (3.30a)
Sne = caculcalSan — Sap) — cu(Sup — San)l (3.300)
S.. = cacpll + cacn(Saa + Spn — 2Sas)] (3.30¢)
conversely
€2Sxn = CASNN + 26ASNe F See — €Al (3.31a)
c2Sun = ChSnn — 26nSne + See — €Al (3.31)
caACSAB = CACBINN T (cp — CA)Sne = Sce T CACH: (3.31¢)

¢ two sets of structure factors means that the scattering

The equivalence of thes
Id be re-expressed. Substituting cquation

intensity in equation (3.15) cou
(3.31) into (3.15b) leads to
FQ) = () S + () Sec + 287 (/) Swe (3.32a)

where
A =fa—Jo (3.32b)
Equation (3.32) justifics the remarks about S, and Sy in §3.11.

[t is probably most readily scen from cquation (3.30) that, at large 0, Sun
oscillates about and tends to one, Sy, behaves similarly about zero and S
about caCp. See = Al Il San = Sup = San-

At Q =0, often called the long-wavclength limit, cquations (3.24), (3.28q)
and (3.29) show the conncction with fluctuations. In a purc material, S, and
S vanish and Syx— S. Thus S(0) is ((AN)2/{N) for a purc material.

The fluctuation expressions can be connected with thermodynamic quanti-
ties. We shall demonstrate the simplest relation and quote the rest in table 3.2.
For thesc purposcs the thermodynamic symbols in table 3.1 will be uscful.

Table 3.1 List of thermodynamic symbols.

Name or dcfinition Symbol
Isothermal compressibility Ky
G

Gibbs free cnergy
Activity of ith component
Number of moles or particles of ith component according to context — #;

Partial molar Gibbs [rec energy of ith component or chemical

potential = (3G [0n)) 1, », W
Partial molar volume (V)1 0, v;
no(va = Vi) o
Boltzmann'’s constant ky
nokg T 0
Grand canonical partition function z

E

Encrgy of jth statc of a system

CaXa + CpXp.

Table 3.2 The connection of fluctuation expressions with thermodynamic quantities. Note: () = ensemble average: {x )
ge:
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Thermodyamic expression

=0

Structure factor for Q

Fluctuation expression

0 = nokpTrr

S(0)

{(AN)?>
(N>

(ND
{(AN)?)

(N?) —(N)?

0 +62S..(0)

Sxn(0)

(N>
(N (A

kpT(1—ca)
(Oua/dca)r, PN

RT
(0*GlecR)r o n
- Scc(o)

Sec(0)

SNC(O)

(ANAc)

2
- 6) 5.(0)

1
A

Saa(0)

)
> —{Np)?

> —<AN&>
(N’

A
(Na>?

1+ <N>(<N
1+ (N (<N

Spa(0)

)

2
B

+ 5)SCC(O)

1
B

')

0+1—<l—
Ca

Sae(0)

)

(NaANg)> — (N X{Ng>
{NAY{Ng>

1+ (N)(

0(f) +5n <<f>>2<5 » «;)i)

F(0)

7
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We now show that S(0) = 0. The way ¥ has been used in this section
indicates that ¥, T and u (but not N) arc the specified variables and the

system in ¥ is accordingly a member of a grand canonical ensemble. For a
pure system the partition function is therefore

N-E
7 =YY exp (“k . ’) (3.33a)
N j B

and the probability of a system having N particles and total energy E; is

uN — E,

3.33h
kT ( )

p(N, E) = Lexp

From the latter the average, (X, of any property X is obtainable as
Zy.; Xp(N, E) and conscquently

(AN)?) = (N = (ND)*) = (N = (N)?

5 Zg_lazf’l’ _<aln,@”>2 ]
=k T) |: <aﬂ2>T.V op T,V
= kBT<0————<N>> (3.34)

Manipulation of the last derivative brings the required result for, by the

chain rule,
).~ &) )
ou T‘V— ong )r.v p )rov \O1)r, v

where n, = (N)/V. Now

) () - @)
ong T.V_ op)rv v \dp T.N Op )7, v

of these, the third relation follows from the thermodynamic equations
V = (0G|dp); and G = {N)u. From equation (3.34)

5-(12—%—2 = —k, T';'/’ <‘;:> = kyTngiy =0 (3.35q)
thus,
5(0) = 0. (3.35b)

Other connections between thermodynamic quantitics and fluctuations can
be demonstrated (Bhatia and Thornton 1970) (sce table 3. 2).

There are other structure factors—called the Ashcroft-Langreth—quite
common in the literature and valuable for some purposes. Writing them

J i
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as SSAI(Q), their relation with others is,

S(M)—OU-{—((.,CI)”Z(SU -1 (3.36a)
SO = ¢, San + See/cr + 28ne a (3.36b)
SHY = c,8un + Seolcz — 2S¢ (3.36¢)
SO = (c162) "San = Seel(€1¢2) ' + [(eafe)) * = (c1/c2) P*]Sne (3.36d)
San = SO + ¢,5GY + 2(c c,) 2 SHBY (3.36¢)
See = €16[638)) + ¢;SBY — 2(cicy) 2SBY] (3.36/)
Sne = €16[SHY =SB + (¢, — ¢)SBY/(cc0) ). (3.36g)

The S{*Y may be defined by

SPL =5, 4 (c1¢5) 'lznoj(g,,(r) — 1) exp(—iQ - r) dr. (3.36h)

Since the new structure factors and the S;; are mutually interconvertible it
is a matter of convenience which is used. The Bhatia~Thornton ones connect
more directly with fluctuations and the S, often called Faber-Ziman struc-
ture factors, may be thought to arise more naturally in scattering discussions
and in conncction with the g,(r). S..(0) has featured in much discussion of
liquid mixtures because, if S..(0) =~ 0 for, say, ¢, = ¢, fluctuations are negligi-
ble and this signifies a stable compound with the composition ¢,. On the
other hand if S..(0) becomes very large then the large concentration fluctua-
tions imply a tendency to phase separation or liquid immiscibility. It can
be shown that S.(0) =cacp if A and B mix randomly without volume
change or heat of mixing (see §6.9). As table 3.2 shows, S..(0) is obtainable
as a function of composition by thermodynamic measurements or from
F(0). Since scattering observations becomes impossible at very small Q,
F(0) has to be obtained by extrapolating the intensity to Q = 0. This should
lead to the same values for S.(0) as thermodynamic measurements and
where this point has been tested the results are satisfactory though not
accurate.

3.13 Other clues to structure. Triplet distribution

Although scattering studics are the major source of structural information,
clues can be picked up clsewhere. Chemical knowledge of molecular struc-
ture or preferred bond oricntations, or crystallographic knowledge of related
crystal structures, may suggest hypotheses about srO in liquids or glasses.
Even bulk propertics, like density, may climinate some structures from con-
sideration and the composition dependence of thermodynamic variables
such as the heat of mixing may indicate that sRo of some kind—as distinct
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from random mixing—may be occurring. However, ideally we require tech-
niques in which the signal is affected by the number and disposition of the
atoms round any onc of them thought of as the origin. The rcader’s attention
will now be drawn bricfly to a few such techniques but it is onc of the
problems in the study of disordered matter that the inference of the structure
from the signal is somewhat complex and indirect.

In x-ray absorption it is often noticed that on the high-cnergy side of the
absorption edge the spectrum has a complex oscillatory form. This phe-
nomenon is extended x-ray absorption fine structure, called EXAFS. X-ray
absorption chicfly results from photoclectron cmission and EXAFs stems
from the fact that on its departure from its parent atom the photoclectron is
backscattered by the neighbouring atoms. There is interference between the
photoelectron wave and the backscattered wavelets and whether this is con-
structive or destructive depends on the photon cnergy. This is the origin of
the ripples in the spectrum. The ripples must therefore depend also on how
many neighbouring atoms there are, of what kind and how far away. In
other words the partial radial distribution functions are involved. For a
monatomic target, the theory (Lee et al 1981) leads to

Ap _<3/'(k» n)> j’ g(r) exp(—r/L)
2
0

= sin(2kr + o(k)) dr (3.37)

o 2k r
where A/, is the fractional change in the absorption coefficient represented
by the ripples; k is the photoelectron wavenumber, f(k, n) is the backscatter-
ing amplitude, L is the photoelectron mean-free path, a(k) is the scattering
phaseshift. Each clement i in a binary mixturc will have its own absorption
edge and two partial distributions, g; and g, will control the backscattering.
Despite the difficulties of extracting anything about g;(r) from EXAFS, mcth-
ods of analysis have been evolved (Lee et al 1981, Teo and Joy 1981) and
applications to liquids and glasses can be found in Lee et al (1981), Teo and
Joy (1981) and Bianconi et al (1983). For example the EXAFS of Ni in an
amorphous Ni-Mo alloy could be fitted accurately with cquation (3.37) if Ni
were assumed to have 3.6 Mo ncighbours at 2.59 A and 8.4 Ni ncighbours
at 2.36 A. EXAFs has made significant contributions to the understanding of
glass structures (§10.6).

The fields from neighbouring atoms affect the magnetic, quadrupole and
Mssbauer resonances of nuclei. Therefore, these phenomena can also fur-
nish clues about sro. For cxample, a given cnvironment results in a charac-
teristic M®&ssbauer spectrum. In a disordered structure a range of
environments will result in a range of superposed spectra. It may be possible
to devise models of sSRo which would result in the observed spectra. As with
scattering and EXAFS, there is a considerable distance in data processing and
interpretation to be traversed before structural inferences can be reached. An
application of NMR to glassy solids is in §10.6.
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It has scveral times been remarked that scattering experiments measure
only g(r) or g,(r) and that this is a serious limitation. It should be added
however that the triplet distribution is theoretically related to the variation
with pressure of the pair distribution. Since scattering experignents can be
performed at more than one pressure, (0S(Q)/dp), can in principle tell us
something about g@. The theory and an experimental application are given
in Egelstaff et al (1971a). ‘
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4

MONTE CARLO AND MOLECULAR
DYNAMICS METHODS

The complicated configuration of atoms in a disordered structure and our
lack of detailed knowledge about it make the routine application of quantum
mechanics and statistical mechanics very difficult. The partition function can
be obtained only by approximate methods even if simplifications are used for
the interparticle potentials. Approximate theoretical methods are not lacking
but they have been supplemented since the 1950s by numerical calculations
with computers. The two most important of these will be introduced in this
chapter.

These numerical simulation methods may be a source of information
about some things, such as the triplet distribution, which cannot be obtained
from experiment. However their chief value probably lies in their ability to
proceed from a well defined physical model to accurate numerical conse-
quences. The latter can then be used to test approximate theories applied to
the same physical model. In many ways this is better than testing the theory
against observations on real matter because, éven if there were no experi-
mental errors, the assumed model might not suit the real sample.

Only the principles of these methods will be described. As with laboratory
techniques, there are numerous tricks of the trade for which the specialist
literature must be consulted.

The second object of this chapter will be to set out some results of the
numerical methods which have particular relevance to the subjects in the rest
of the book.

4.1 The Monte Carlo method

It will be convenient to recall first some formulae from statistical mechanics.
If the systems in an ensemble have prescribed V, N and T the ensemble is
canonical and the normalised probability that a system is in its ith quantum
state with encrgy E, is

P, =exp(—pE)/Z (4.1a)

where

Z= Z exp(—pBE) (4.1b)



