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INTRODUCTION

This chapter will provide a detailed description of the reverse Monte Carlo (RMC)
modelling method. RMC has been established over the last ten years as a general method
for obtaining models of a wide variety of disordered structures, including liquids, glasses,
crystals, polymers and amorphous magnets. Particular emphasis will be given here on how
it may be used to refine the disorder in glassy and crystalline materials. In addition to
explaining the principles and rationale of the RMC method, results from modelling various
polymorphs of silica will be used to demonstrate how the method works in practice. For
the crystalline systems, the RMC models will be compared to diffraction patterns from
powdered samples, since RMC modelling of single crystal diffraction is covered in the
chapter by V. M. Nield in this volume.

The outline of this chapter is as follows. The next section introduces various
background formulae which underpin the ideas of total scattering. Then reverse Monte
Carlo modelling is introduced and described in detail. This is followed by a section which
works through the application of RMC modelling to the structure of glassy silica and the
results are compared with other existing models. The ideas of RMC refinement are then
described and applied to glassy silica. Preliminary results from RMC refinement of
disordered crystalline phases of silica are then described. Finally, conclusions are made
with a discussion of future possibilities for the RMC method.

THEORETICAL FORMALISM

Before describing the modelling method in detail, it is necessary to define various
relevant correlation functions. The data used to constrain the RMC models described in
this chapter are from ‘total scattering’ measurements. The ideal total scattering
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measurement would collect scattering over all momentum transfers  integrating at
each over all possible enegy transfers which may take place within the sample. Most
good neutron and X-ray diffraction measurements are a reasonable approximation to this
ideal, albeit with a reduced range of Total scattering therefore contains both Bragg and
diffuse components from a crystalline material and, as will be shown later, it is vital to
include the diffuse scattering when considering structural disorder. The total structure
factor, F(Q), obtained from careful correction of neutron total scattering data1 from an n-
component system, can be defined in terms of Faber-Ziman partial structure factors

where and is the coherent neutron scattering length and proportion of atom

respectively. The formula still holds for X-ray scattering if the neutron scattering lengths
are replaced by X-ray form factors. These partial structure factors are the sine Fourier
transforms of the partial radial distribution functions,

where is the number density of atoms. are defined explicity as

where is the number of particles of type between distances r and r+dr from a
particle of type averaged over all particles is the number density of atom type It
is also useful to define a total radial distribution function G’(r) in terms of

such that the total structure factor F(Q) is the sine Fourier transform of G’(r):

Frequently G(r) is used, which is a normalised total radial distribution function

such that and where is the smallest distance two atoms may
approach each other. T(r), another popular form of the real space correlation function, is
then proportional to rG(r).
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may be calculated simply from a three-dimensional configuration of atom
positions and from these functions all the above functions may be derived. Similarly F(Q),
the coherent part of the experimental total scattering can be used either directly, or Fourier
transformed to G(r) for comparison with the equivalent functions from the computer
generated models.

REVERSE MONTE CARLO MODELLING

Background

The reverse Monte Carlo modelling technique was developed to create three-
dimensional structural models of liquid and amorphous (or glassy) materials without bias.
Liquids and glasses are, in general, macroscopically isotropic and in a diffraction
measurement the material will scatter isotropically, varying only as a function of the
modulus of the momentum transfer, Such a one-dimensional scattering function (the
structure factor F(Q) - see Equation 1) can be Fourier transformed to provide information
about atom-atom distances, but vector information is lost.

Modelling of some form or another was one obvious way to attempt a reconstruction
of the three-dimensional local structure of glasses and liquids from the one-dimensional
scattering information. The earliest attempts along these lines were by Kaplow et al 3 in
1968 (investigating vitreous selenium) and Renninger et al 4 in 1974 (on arsenic-selenium
glasses). Both these works used small spherical models and further progress was hampered
by the limitations in computer power. Subsequently the concepts were developed
successfully by McGreevy and Pusztai5 who modelled the structure of liquid argon in 1988,
coined the term ‘reverse Monte Carlo modelling’ and established the basic method which is
used extensively today . McGreevy and Pusztai argued5 that the RMC method’s strength
lay in the fact that no interatomic potentials were imposed on the structural model and
hence the technique was very different from the more familiar Monte Carlo simulation
which uses a set of potentials to constrain the model. In RMC modelling, the model is only
required to agree with the structural data. It was believed that, in principle, the resultant
RMC models could then be used to determine the interatomic potentials which governed
the structure. Instead of working from the potentials to the structure to the structural data,
the structural data were used to determine the structure and hence the potentials. The
Monte Carlo cycle was operated in ‘reverse’. However, because the available structural
data do not necessarily describe a unique structure (see later) and three-body terms (which
are not contained in the structure factor F(Q)) are equally important in determining
structure, in practice it is very difficult to use RMC to determine appropriate potential
functions.

The RMC approach has many advantages over other modelling techniques, principally
because it does not bias the resulting model. If the data do not require a specific structural
feature, then the RMC model is unlikely to show such a feature. This has to some extent
changed the way that disordered structures, and liquid and amorphous structures in
particular, are considered. The local structure of a glass is usually thought of in terms of
small structural units which are found in chemically similar crystalline materials. Models
are then built by joining these semi-rigid structural units, either explicitly or implicitly from
the description of interatomic potential functions. This can result in models which are too
ordered and do not have sufficient flexibility to include other possible structural motifs. In
contrast, no such features are assumed in RMC models and often exactly the opposite type
of structural models are obtained with too much disorder. As will be shown later, this is
because the data do not provide sufficient structural information to define uniquely the
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structure and a disordered structure, although consistent with the data, is more likely to
result from random Monte Carlo moves. For many systems neither extreme is entirely
satisfactory and a middle ground must be established. As a result, although RMC is a very
powerful method, it must be controlled in appropriate ways to yield good, respresentative
structural models. Such control can be achieved by using a constrained RMC refinement of
a carefully constructed structural model which already contains pertinent structural features.
Thus the best features of RMC modelling (lack of bias, structural flexibility, consistency
with experimental data) are combined with an initial model containing structural elements
which RMC modelling may not be good at reproducing, but are nonetheless indisputable.
This is clearly common sense when considering disordered crystals, since the long-range
periodicity and average crystal structure must be maintained throughout the RMC
modelling of the short-range structural disorder. This is analogous to the process of
Rietveld refinement7, where an initial structural model is refined by comparison with a
powder diffraction pattern.

The RMC Modelling Method

1. Generate a three-dimensional configuration of N atoms, which is constrained by
periodic boundary conditions. The configuration is frequently a cube with lengths L
for convenience, but can have different geometries to suit (for example) different
crystal symmetries. The practical effect of periodic boundary conditions is that when
an atom is moved beyond one side of the configuration box, it moves back into the
box at the opposite side. All atoms within the configuration must also satisfy ‘closest
approach’ constraints such that two atom types may only come within a certain
distance of each other. The closest approaches may, with ideal data, be determined
uniquely from the partial radial distribution functions, but they are more likely to be
deduced from a combination of factors, and can be adjusted from examination of how
the modelling progresses. It is important at the outset to make them smaller than may
seem physical, since they act as an infinite hard-core potential.

2. Calculate the function corresponding to the experimentally determined data, such as
the total structure factor F(Q)

3. Calculate the difference between the measured structure factor and that
determined from the configuration

where the sum is over all n experimental data points, each with error

4. One atom is selected at random

5. This atom is moved a random amount in a random direction up to a pre-defined limit.
If the atom still satisfies the closest approach constraints, the experimentally
determined data is recalculated (e.g. ). Since only one atom is moved at any
one time, it is only necessary to calculate the change in due to the atom’s
move. This involves a calculation of size ~N compared with for calculating

from scratch at each iteration.
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6. The experimentally determined data are compared.

If the new is lower than the one determined with the atom in the previous position,
the move it accepted and the new configuration becomes the old

configuration. If the new is higher then the move is accepted with probability
or else it is rejected. In practice the acceptance is determined

by comparing P with a random number R between 0 and 1 generated by the computer.
The move is accepted when

7. The algorithm is continued by returning to step 4. Initially will decrease until it
reaches an equilibrium value and further moves make little change to The model
is then said to have converged. Moves may then be continued and configurations
collected every ~N accepted moves to collect statistically independent configurations.

As can be seen from the description given above, RMC modelling and the well known
Metropolis Monte Carlo simulation8 are very similar. The only difference is that whereas
Monte Carlo simulation samples the potential energy, RMC samples the difference between
calculated and experimental structural data. The attributes that are particularly important in
the Monte Carlo algorithm9 should be replicated in the RMC algorithm. The most
important of which is the use of a Markov chain, so that local minima are avoided and the
final configuration is independent of the starting point.

The definition of may be generalised to include comparison with extra data sets
such as X-ray, neutron and EXAFS structure factors. Equally extra terms may be
introduced to constrain the RMC model further such as predefined atom-atom co-
ordinations or nearest neighbour distances. may then be written as

to include comparison with the k structure factors and the m constraints. and are
the required value of the constraint and the value calculated from the RMC generated
configuration respectively. is a weighting term which influences the strength of any
particular constraint. In a crude manner co-ordination constraints can be considered as
simple three-body terms restraining the model. In crystalline materials it is particularly
necessary to constrain the model, for example to maintain the integrity of a molecular
fragment or to restrict a molecule to a finite number of possible orientations and these can
simply be included in the definition of (Equation 9). Equally the model may be
constrained by restricting the movements of atoms to specific regions of the configuration,
such as disordering an atom along a specific direction, only allowing atoms to swap etc.

The ability to fit different data sets with the same three-dimensional model is
particularly important in order to separate the contributions from different partial radial
distribution functions. As shown in Equation 1, the total structure factor F(Q) for an n
component system is composed of a weighted sum of partial structure factors

Therefore F(Q) from a two component system is composed of three partial
structure factors or, via Equation 2, three partial radial distribution functions, The
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technique of neutron isotopic substitution10 can be used to obtain experimentally,
where, for an n component system, total structure factors F(Q) composed of
different weightings (obtained by using different isotopes of the same element with
different neutron scattering lengths) of the same partial structure factors, are
measured. are then obtained by simultaneously solving the set of F(Q) for
Even given that suitable isotopes exist for the system of interest, the errors in measurement
may mean that the results from such a separation may not provide which are self-
consistent. The combination of neutron and X-ray F(Q) may provide partial separation of

but it can never be unambiguous, even for a binary compound. RMC modelling of
the data compensates in part for this loss of information since the which come from a
single three-dimensional configuration, must be self-consistent. It should however be
stressed that the better the data, the more constrained the final model will be and to get the
best from RMC modelling, high quality data are required.

MODELLING GLASSY SILICA,

Previous Models of Glassy Silica

It was realised very early that glassy materials, although highly disordered and
isotropic over large distances, may possess a definite local order. Zachariasen11 first
introduced the idea of a continuous random network (CRN) for a glassy structure where the
atoms are bonded locally and form a three-dimensional structure with no periodicity or
symmetry. Based on the CRN model, glassy silica is thought of as a continuous
network of units joined at the corners such that each Si is surrounded by four O and
each O has two Si neighbours. Given that in most silicate crystals the unit forms an
approximate tetrahedron, then a single Si-O bond length and O-Si-O bond angle of 109.47°
would be expected in the glass. This is supported by the experimental neutron G(r) which
has one strong peak at 1.617Å (Si-O) and a second one at 2.626Å (O-O) implying a O-Si-O
average angle of 108.6°.12 Also NMR experiments find little evidence for the Si co-
ordination to be different from 4 or the O co-ordination to be different from 2.13 However
the manner in which these units are joined is more difficult to obtain directly from
experimental data. Steric constraints prevent face- or edge-sharing tetrahedra so all
tetrahedra must be corner-sharing, described by three angles, the Si-O-Si bond angle and
two torsional angles which define the orientation of each joined tetrahedra about the Si-O
bonds which meet at the common O atom (see Figure 1). The first (Si-O) and third (Si-Si)
lowest r peaks in G(r) would give an average value of the Si-O-Si bond angle, but the Si-Si
peak is partially overlapped and very weak in the neutron G(r). Synchrotron X-ray data
have been used to deduce a broad Si-O-Si bond angle  distribution,
with V peaking at 143° and at 1 8 0 ° . 1 4 Longer-range structure is virtually impossible to
extract directly from structural data (apart from the characteristic atom-atom distances). It
is therefore not entirely surprising that modelling has been used to investigate the structure
of silica further, given that direct experimental information about the structure becomes
vague even at distances ~3Å and greater and that it is these distances which play the most
important part in glass formation.

One of the earliest three-dimensional models of silica glass was hand-built by Bell and
Dean15. Such models were in reasonable agreement with the then available diffraction data
but were tedious to construct and the density was difficult to control, being critically
dependent on the chosen Si-O-Si bond angles. Subsequent models were all computer
generated, the most comprehensive of which were by Gladden16 who followed a complex
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recipe for joining units to construct 1000 atom clusters. Some of her models had very
good agreement with G(r) and could be used to investigate optimal Si-O-Si bond angle
distributions and longer-range structure. The other method which has been used
extensively is Molecular Dynamics simulation17. These simulations vary in configuration
size and simulation complexity, but do not, in general, fit the diffraction data as well as the
empirical models.

RMC Models of Glassy Silica

For it is not possible to experimentally separate the Si-Si, Si-O and O-O partial
correlation functions, since suitable isotopes for isotopic substitution do not exist and the
two available F(Q) (X-ray and neutron) are not sufficient to obtain three The first
RMC model of silica18 used the method in its basic, unconstrained form starting from a
configuration of 2596 atoms randomly placed in a cubic configuration box of length
34.017Å. Good agreement was obtained with the X-ray and neutron F(Q) but the partial
radial distribution functions contained some unsatisfactory features which suggested
that the separation of the was not correct (for example there was a weak peak in

at r values where an Si-O correlation was unlikely and which could instead be
attributed to the strongest peak in ). Also, the average Si-O co-ordination was only
3.7 and the average O-Si co-ordination was 1.8 and some of the tetrahedral unit were
somewhat distorted. The O-Si-O bond angle distribution peaked sharply at 109.6°, but
contained a significant tail to higher angles. It is perhaps more significant, given the
random starting configuration and lack of any constraints, that any identifiable structural
features were found and in fact the majority of the configuration contained joined and
structurally  correct units. However, some regions of the configuration did not possess
the required local connected structure and the RMC modelling was not able to completely
connect the structure unaided, since it could find a less-well connected structure with
suitable agreement to the data.
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Subsequent to this model, a constrained RMC model of 3000 atoms was produced19,
requiring the model to maintain the expected Si-O and O-Si co-ordinations within a defined
near-neighbour distance and still fit the data. The second summation term in Equation (9)
was used whereby there was a penalty in the for all non-perfectly co-ordinated atoms.
Again good fits to the F(Q) data were obtained (see Figure 2) and 96.2% of the Si atoms
were co-ordinated to four O atoms and 95.4% of the O atoms were co-ordinated to two Si
atoms. However, the good connectivity of this model was achieved at the expense of the
local order, with, if anything, more distorted tetrahedra than the unconstrained model
(including a weak peak on the high-r side of the low-r Si-O peak). Although both these
models have considerable merit, they are both flawed in some important respects.

REVERSE MONTE CARLO REFINEMENT

The flaws in the RMC models of glassy silica which have been pointed out in the
above section should not be used to discount the RMC modelling method completely. It
should be remembered that it was the intention of RMC modelling at the outset to produce
valid three-dimensional structural models without bias. The RMC models have
demonstrated that the data do indeed suggest that silica glass is composed of ideally
connected edge-sharing tetrahedra and they have been used to quantify the Si-O-Si
bond angle distribution and further details of the structure. However RMC modelling of
the data alone will not be sufficient to produce a model which displays these structural
characteristics perfectly. RMC modelling tends to produce the most disordered structure
which is consistent with the data and such a model will not produce a glass structure which
is composed of very specific structural units. It is therefore necessary to introduce extra
constraints into the model in a satisfactory manner without unduly prejudicing the final
structure. The constrained model19 imposed connectivity at the expense of increased
tetrahedral distortion.
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The two-stage process of RMC refinement has therefore been developed21. A starting
model is created independent of the data which possesses the characteristics which are
unambiguously known to be correct and the data are then used to refine the model with
RMC. It is clearly essential to constrain the RMC refinement in a suitable way so as not to
destroy the essential structural features of the initial model whilst allowing the refinement
sufficient flexibility to fit the data. In the case of a glass structure this would usually mean
that the initial model had the correct local structure and the RMC refined final model was
then used to investigate longer-range structure and amount of distortion. For a disordered
crystal, the initial model would normally be the average crystal structure deduced from the
analysis of the Bragg peaks and the RMC refined model would provide details about the
local deviations from the average structure.

RMC Refinement of Glassy Silica

A form of this method was attempted by Gladden22 starting from her existing models
and Bionducci et al 23 attempted to obtain a model of glassy silica starting from the
quartz structure. However neither of these models started with a completely connected
CRN and periodic boundary conditions and during RMC refinement their models were
corrupted such that the atoms in Gladden’s cluster became too close to each other and the
connectivity initially present in was partially destroyed.

The most recent RMC refinement of glassy silica starts from a model of 3000 atoms
and periodic boundary conditions21. The initial model and the method of its construction
has already been described21. This model has a similar connectivity to the model described
by Wicks19, but has the advantage that the tetrahedra are not distorted (see Figure 3).
The F(Q) calculated from this starting model are actually in good agreement with the
experimental data except that they do not reproduce the intensity of the peak at lowest Q
well. This model was then refined using RMC by slowly increasing the weighting of the

109



X-ray and neutron F(Q) with respect to the following constraints designed to maintain the
integri ty of the tetrahedra (compare with Equation 9):
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where is the ideal Si-O distance (1.61 Å) and is the ideal tetrahedral angle, with
and chosen to produce qualitatively the appropriate widths of the two lowest-r

peaks in G(r). The connectivity was also maintained by not allowing atoms to pass past
each other - the CRN could deform but Si-O bonds could not be broken. The model
produced in this way gave excellent agreement with the F(Q)’s, better agreement than the
previous RMC models, with the first structure factor peak fitting well (see Figure 4). There
is not much change in the after RMC refinement, with most of the changes in the
longer-range details (as reflected by the changes in the first structure factor peak). The
most significant difference is found in the Si-O-Si bond angle distribution which becomes
broader on RMC refinement (Figure 5).

This RMC refinement of glassy silica demonstrates that it is possible to use RMC
modelling, suitably constrained, to improve the fit to data without breaking up an existing
structure. The development from the earlier RMC models, which showed that certain
structural units are in the glass structure, to the subsequent RMC refinement of a model
which set out to incorporate such units, with an improved fit to the data, is a powerful and
potentially wide-ranging application of the RMC technique.

STRUCTURAL DISORDER IN CRYSTALLINE SILICAS

Introduction

Glassy silica is only one of many structural forms of found at ambient pressure24.
As shown in Figure 6, at equilibrium and with decreasing temperature, the silica melt
transforms in the sequence:
Other phases may be stabilised at room temperature with faster cooling rates: the glass
(from the melt), (from ) and MC-tridymite (from HP-tridymite,
via various other low-symmetry tridymite modifications). All of these solid phases are
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characterised by tetrahedra with differing degrees of distortion. The high temperature
phases arc also believed to be significantly disordered. In the case of quartz, the thermally
induced disorder results in the average crystal structure (obtained from Bragg peak intensity
analysis) showing a contraction of the Si-O and O-O bond lengths accompanied by an
increase in the Si-O-Si bond angle towards 180° with increased temperature (see Table 1).
In the Si-O bond length is anomalously short and the Si-O-Si bond angle is
180°, with large oxygen displacement parameters normal to the Si-Si bonds25. A similar
picture is obtained for HP-tridymite (see Figure 7). A 180° Si-O-Si bond angle is known to
be unfavourable26, and various models have been proposed to introduce disorder consistent
with a more probable Si-O-Si bond angle of around 145°. One suggestion is that
cristobalite is composed of domains of the low-temperature phase27.
Alternatively, the oxygen atoms do not lie on their average positions but instead they are
dynamically distributed around this position to give a longer Si-O bond length and a more
physically realistic Si-O-Si bond angle28. In this manner the oxygen atoms are disordered
around an annulus, which may or may not contain preferred positions29.

In order to distinguish experimentally between possible disorder models the average
structure is inappropriate. Bragg intensities arise from elastic scattering and structures
deduced from them are time- and space-averaged structures. Structural disorder is then
inferred from the variance in the distribution function of instantaneous atom positions that
reflects the thermal motion or the partial occupancy of a number of possible sites. Such a
structure would not distinguish between an average arising from a superposition of static
local domains or from dynamical disorder. In contrast, total scattering directly determines
local disorder. Total scattering contains the Bragg and diffuse scattering and integrates
over all possible energy transfers between the probe and the sample and gives an
instantaneous or ‘snap-shot’ picture of the structure. The G(r) determined from a total
scattering F(Q) will directly determine bond lengths and can be used to distinguish between
different models for structural disorder. This is demonstrated in Figure 8, which shows the
low-r part of rG(r) from at 300°C,30 obtained from a direct Fourier transform
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of F(Q) measured on the LAD neutron time-of-flight diffractometer at the ISIS spallation
neutron source and compared with the positions of the shortest ‘bonds’ obtained from
Rietveld refinement. The three lowest-r peaks in G(r) directly correspond to the Si-O, O-O
and Si-Si bond lengths and can be used to deduce the O-Si-O intra- and Si-O-Si inter-
tetrahedral angles. These are also shown in Table 1. It should be pointed out that time-of-
flight neutron diffraction is unrivalled in this regard. A time-of-flight neutron
diffractometer optimised for the study of disordered materials will measure F(Q) up to Q-
values of at least (giving good real space resolution in G(r) of order ) and
will simultaneously determine the Bragg intensities with good Q-space resolution for
reliable Rietveld refinement. The data shown in each column of Table 1 are from a single
measurement on LAD.

The data from G(r) in Table 1 give a very different picture of the local structure of
these silica phases. There is no contraction of the Si-O and O-O bond lengths and no
anomalous increase in Si-O-Si bond angles towards 180° with increasing temperature. The
local structure is much more physically sensible, and incidentally, much more similar to the
glass.

RMC Refinement of Cristobalite

In order to characterise the structural disorder in these systems further, a structural
model must be determined which is consistent with the local structure (from G(r)) and the
average structure (from Rietveld refinement of Bragg intensities). This is an obvious
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application for RMC refinement since a good starting model is available (the average
structure) and RMC modelling will introduce structural disorder into the model in an
unbiased manner. The procedure for refinement is as follows:

1. Use the Rietveld method to refine the Bragg peak intensities to obtain the average
structure.

2. A configuration based on the ideal average structure is constructed. This may be
viewed as a supercell of the crystal unit cell (e.g. unit cells) and takes no
account of the distribution of atoms implied from the thermal parameters in the
average structure.

3. The atoms are then moved randomly one at a time so as to satisfy the constraints of
Equation 10, without any comparison to F(Q) in Equation 10 is
determined from the lowest-r peak in G(r). and are chosen to
approximately reproduce the widths of the two lowest-r peaks in G(r). The atom-atom
connectivity is maintained throughout.

4. The weighting of fit to F(Q) is slowly increased ( is slowly decreased) with
respect to the constraints un t i l a good fit to the data is obtained.

The constraints are not too strong to dominate the final structure but are necessary to
impose tetrahedra on the structure during the RMC refinement. Indeed the final
refined model has broader Si-O and O-O peaks in G(r) and a broader O-Si-O bond angle
distribution than would be expected on the basis of the constraints alone.

The crystalline long-range order must be effectively accounted for in the model. It is
only possible to calculate G(r) from the model out to distances where  is the
shortest dimension of the configuration box. This is equivalent to the perfect long-range
G(r) multiplied by a step function m(r) where m(r)=1 if and m(r)=0
otherwise. The Fourier transform of this section of G(r) is F(Q) convoluted with the
transform of m(r), i.e. This has the effect of broadening the sharp
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Bragg peaks and comparison between and the calculated from the
configuration would be inappropriate. Hence the comparison is made between and

convoluted with M(Q), i.e.

This procedure is not usually necessary for glassy or liquid data where G(r) is flat at
The alternative to this is to compare with where has been

determined using an inverse method which bypasses the truncation effects of the forward
transform when F(Q) is not flat at the maximum Q measured. Such techniques
will not be described here, and readers are referred to Soper et al31.

The RMC fit to the F(Q) data from at 300°C is shown in Figure 9. The
model consisted of 24,000 atoms ( unit cells within a cubic box of sides

The initial model was created by placing the atoms on the positions
determined from Rietveld refinement of the data and then randomly moving atoms to
increase the Si-O distance from the Rietveld determined value of to the bond length
determined from the lowest-r peak in G(r) while maintaining the tetrahedral
arrangement, using constraints described by Equation 10. This starting model was then
refined using the F(Q) data and the RMC method described at the start of this section.
Figure 10 shows the comparison between rG(r) calculated from the RMC model and rG(r)
obtained from the direct transform of F(Q). This shows that very good agreement is also
obtained between the real space correlation functions. The bond-angle distribution
functions are shown in Figure 11 and the partial radial distribution functions in Figure 12.
Three things should be noted. First, as discussed previously30 the G(r) for is
similar to that of the glass and different from This would discount the
suggestion that is an average of domains. Secondly, the
distribution of O around the bond-joining neighbouring Si atoms in [ 1 1 1 ] directions is
isotropic in (the torsional angle around the Si-Si bond) and peaks at (the angle
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between the Si-O bond and the Si-Si direction). Hence there is no evidence for preferred
oxygen sites on this ring of O density in the RMC model. Thirdly, it is possible to use the
RMC model to calculate the expected diffuse scattering in planes of reciprocal space. This
is equivalent to the scattering which would be measured from a single crystal (if one
existed that were large enough) and the calculation is possible because of the three-
dimensional nature of the RMC model. The diffuse scattering in the (hk0) plane is shown
in Figure 13 and compared with electron diffraction results from a very small single crystal
grain32. There is very good agreement in the positions of the diffuse scattering lines which
occur principally in 110 and 100 directions in this plane. This shows that the RMC model
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is not only able to reproduce the one dimensional F(Q) but also three-dimensional
scattering data. Further discussion of the results from these models, and similar models of
other phases of crystalline silica will be presented in a later paper33, although some of the
consequences of these models on rigid unit mode theories of silicate minerals are
described in another chapter of this book by M. T. Dove et al.
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CONCLUSIONS

This chapter has described in detail the techniques of RMC modelling and refinement.
Results from glassy silica and the disordered crystalline of cristobalite have been
presented. These results show that with careful application of RMC methods, good
representative structures of both locally ordered glasses and locally disordered crystals can
be obtained. These methods are completely general and can be applied successfully to a
wide range of systems which show structural disorder, with careful consideration to the
form of constraints and the construction of appropriate starting models.
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