Materiali Ceramici e Vetro Corso di Laurea di Chimica Tecnologie Chimiche a.a. 2015-2016

MODULO III

Giovanni Baldi Tel: 335 71 22 803 baldig@colorobbia.it

Modulo II

La fusione del vetro

La fusione del vetro, caratteristiche dei fusi

Il processo di fusione

Caratteristiche Purezza Selezione delle materie prime Reperibilità Riproducibilità Costo Calcolo del batch Segregazione Pesatura e mescolamento Reologia delle polveri **Fusione**

La formulazione dei vetri

tipo	Vetri silicati e germanati	condizionat i	Vetri calcogenuri	Vetri alogenati
Formatori di reticolo	SiO ₂ , B ₂ O ₃ P ₂ O ₅ GeO ₂	Bi ₂ O ₃ As ₂ O ₃ Sb ₂ O ₃ TeO ₂ Al ₂ O ₃ Ga ₂ O ₃ V ₂ O ₅	S Se Te	BeF ₂ ZrF ₄
Fondenti	Ossidi alcalini PbO			
Stabilizzatori Modificatori di proprietà	Ossidi alcalino terrosi Al2O3			
Coloranti	Ossidi dei metalli 3d e 4f ±			
Agenti affinanti	NaCl CaF ₂ NaF Na ₃ AlF ₆ Solfati Sb ₂ O ₃ As O ₂			

Il calcolo del batch : i fattori gravimetrici

Nome	Composizione	Fattore grav.
Albite	Na ₂ O·Al ₂ O ₃ ·6SiO ₂	Na ₂ O = 8,46
Abite	Na2O A2O3 001O2	Al ₂ O ₃ = 5,14
		SiO ₂ = 1,45
Allumina	Al ₂ O ₃	Al ₂ O ₃ = 1
Allumina idrata	Al ₂ O ₃ ·3H ₂ O	Al ₂ O ₃ = 1,53
Anortite	CaO-Al ₂ O ₃ -2SiO ₂	CaO = 4,96
Allottio	080 703 20102	Al ₂ O ₃ = 2,73
		SiO ₂ = 2,32
Aplite	Feld.alcalino-calcico	
Aragonite	CaCO ₃	CaO = 1,78
Barite Spato	BaSO ₄	BaO = 1,52
Borace	Na ₂ O-2B ₂ O ₃ -10H ₂ O	Na ₂ O = 6,14
Borace	Na ₂ O-2B ₂ O ₃ -10H ₂ O	B ₂ O ₃ = 2,74
Borace anidro	Na ₂ O·2B ₂ O ₃	Na ₂ O = 3,25
boldoo dilidio	11020 20203	B ₂ O ₃ = 1,45
Acido Borico	B ₂ O ₃ ·3H ₂ O	B ₂ O ₃ = 1,78
Dolomite calcinata	CaO-MgO	CaO = 1,72
Doronina Galoniata	odo mgo	MgO = 2,39
Potassa	кон	K ₂ O = 1,19
Soda	NaOH	Na ₂ O = 1,29

Nome	Composizione	Fattore grav.
		NaF = 1,67
Criolite	3NaF ·AIF ₃	AIF ₃ = 2,50
Cullet	glass	
Calcio fosfato		CaO = 1,84
Bone ash	Ca ₃ (PO ₄) ₂	P ₂ O ₅ = 2,19
		CaO = 3,29
Dolomite	CaCO ₃ ·MgCO ₃	MgO = 4,58
Spatofluoro	CaF ₂	CaF ₂ =1
Gesso	CaSO ₄ ·2H ₂ O	CaO = 3,07
Kyanite	Al ₂ O ₃ ·SiO ₂	
Calcio ossido Lime	CaO	CaO = 1
Calcare Limestone	CaCO ₃	CaO = 1,78
Litargirio	PbO	PbO = 1
Microclino	K ₂ O·Al ₂ O ₃ ·6SiO ₂	K ₂ O = 5,91
		Al ₂ O ₃ = 5,46
		SiO ₂ = 1,54
Nefelina	Na ₂ O·Al ₂ O ₃ ·2SiO ₂	Na ₂ O = 2,84
		Al ₂ O ₃ = 1,73
		SiO ₂ = 1,47

Nome	Composizione	Fattore grav.	
Nefelina Sienite			
Potassio nitrato Saltpeter	KNO ₃	K ₂ O = 2,15	
Potassio carbonato Potassa	K ₂ CO ₃	K ₂ O = 1,47	
Minio	Pb ₃ O ₄	PbO = 1,02	
Sodio solfato Salt cake	Na _z SO ₄	Na ₂ O = 2,29	
Sabbia Flint	SiO ₂	SiO ₂ = 1	
Slag	Scorie di fornace		
Calce	Ca(OH) ₂	CaO = 1,32	
Soda Soda ash	Na ₂ CO ₃	Na ₂ O = 1,71	
Sodio nitrato Nitro del Cile	NaNO ₃	Na ₂ O = 2,74	
		Li ₂ O = 12,46	
Spodumene	Li ₂ O·Al ₂ O ₃ ·4SiO ₂	Al ₂ O ₃ = 3,65	
		SiO ₂ = 1,55	
Calcite Whiting	CaCO ₃	CaO = 1,79	

Calcolo del batch

Composizione del vetro: 20 Na₂O-5Al₂O₃-75SiO₂

1) Pesi molecolari dei componenti (g mol⁻¹) Na₂O = 61,98 Al₂O₃= 101,96 SiO₂ = 60,09

2) Calcolo del peso molecolare del vetro $(0.2 \times 61.98) + (0.05 \times 101.96) + (0.75 \times 60.09) = 62.56 \text{ g mol}^{-1}$

3) Calcolo della frazione in peso di ciascun componente $Na_2O = (0,2x61,98) / 62,56 = 0,198$

 Al_2O_3 = (0,05101,96) / 62,56 = 0,0815 SiO_2 = (0,75x60,09) / 62,56 = 0,720

4) Scelta delle materie prime

Sabbia di quarzo (SiO2)

Albite (Na₂O·Al₂O₃·6SiO₂)

Soda (Na₂CO₃₎

		19,8	8,15	72,0	Quantità in peso dei componenti
Soda	Albite	Na ₂ O	Al ₂ O ₃	SiO ₂	
			8,15 ¹		Si moltiplica il peso dell'Al2O3 per il fattore gravimetrico dell'albite
	41,892	4,953		28,893	Si divide il peso dell'albite per i fattori gravimetrici di Na ₂ O e SiO ₂
		14,854		43,115	Si sottrae (3) dalla quantità in peso dei componenti
25,395					Si moltiplica (4) per il fattore gravimetrico della soda
					Si moltiplica (5) per il fattore gravimetrico della silice
		41,892	Soda Albite Na ₂ O 41,89 ² 4,95 ³ 14,85 ⁴	Soda Albite Na ₂ O Al ₂ O ₃ 8,15 ¹ 41,89 ² 4,95 ³ 14,85 ⁴	Soda Albite Na2O Al2O3 SiO2 41,892 4,953 28,893 14,854 43,115

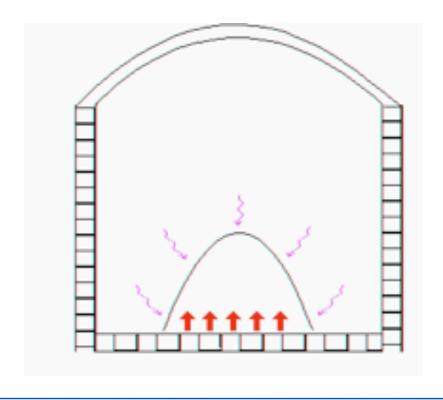
Tipologie di vetro

Composition of Repres	Composition of Representative Oxide Glasses												
		oxide ingredient (percent by weight)											
glass family	glass application	silica (SiO ₂)	soda (Na ₂ O)	lime (CaO)	alumina (Al ₂ O ₃)	magnesia (MgO)	boron oxide (B ₂ O ₃)	barium oxide (BaO)	lead oxide (PbO)	potassium oxide (K ₂ O)	zinc oxide (ZnO)	glass application	glass family
Silica	furnace tubes, silicon melting crucibles	100.0										furnace tubes, silicon melting crucibles	Silica
Soda-lime silicate	window container bulb and tube tableware	72.0 74.0 73.3 74.0	14.2 15.3 16.0 18.0	10.0 5.4 5.2 7.5	0.6 1.0 1.3 0.5	2.5 3.7 3.5		trace		0.6 0.6		window container bulb and tube tableware	Soda-lime silicate
Sodium borosilicate	chemical glassware	81.0	4.5		2.0		12.0				,	chemical glassware	Sodium borosilicate
Lead-alkali silicate	lead "crystal" television funnel	59.0 54.0	2.0 6.0	3.0	0.4 2.0	2.0			25.0 23.0	12.0 8.0	1.5	lead "crystal" television funnel	Lead-alkali silicate
Aluminosilicate	glass halogen lamp fibreglass "E"	57.0 52.9	0.01	10.0 17.4	16.0 14.5	7.0 4.4	4.0 9.2	6.0		trace 1.0		glass halogen lamp fibreglass "E"	Aluminosilicate
Optical	"crown"	68.9	8.8				10.1	2.8		8.4	1.0	"crown"	Optica1

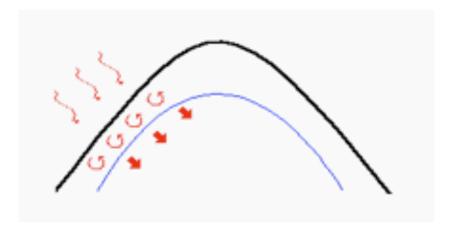
Modulo III

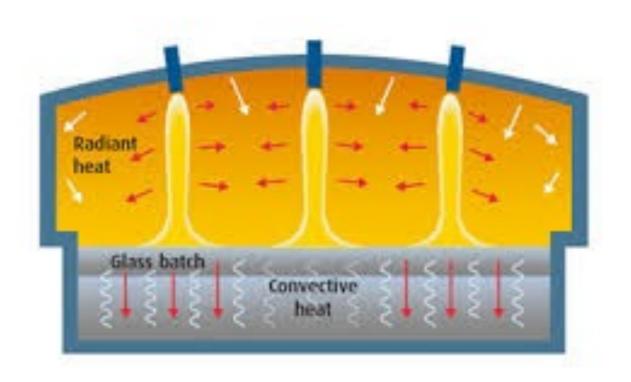
vetro	SiO ₂	Na ₂ O	K ₂ O	CaO	B ₂ O ₃	Al ₂ O ₃	altri	proprietà
1 silicico	99.5+							Difficile da lavorare, ottime resistenza shock termici
2 96% silice	96.3	<0.2	<0.2		2.9	0.4		
3 sodico-calcico	71-73	12-14		10-12		0.5-1.5	MgO, 1-4	Facile da lavorare
4 silicato di piombo	63	7.6	6	0.3	0.2	016	PbO, 21 MgO, 0.2	Facile da fondere e fabbricare
5 alto piombo	35		7.2				PbO, 58	
6 borosilicato	80.5	3.8	0.4		12.9	2.2		Bassa espansione e buona resistenza shock termici
7 bassa perdita elettrica	70		0.5		28	1.1	PbO, 1.2	
8 alluminoborosilicato	74.7	6.4	0.5	0.9	9.6	5.6	B ₂ O, 2.2	Durabilità chimica
9 bassi alcali (vetro E)	54.5	0.5		22	8.5	14.5		Compositi a fibre di vetro
10 alluminosilicato	57	1		5.5	4	20.5	MgO, 12	
11 vetro-ceramica	40-70					10-35	MgO, 10-30 TiO ₂ , 7-15	

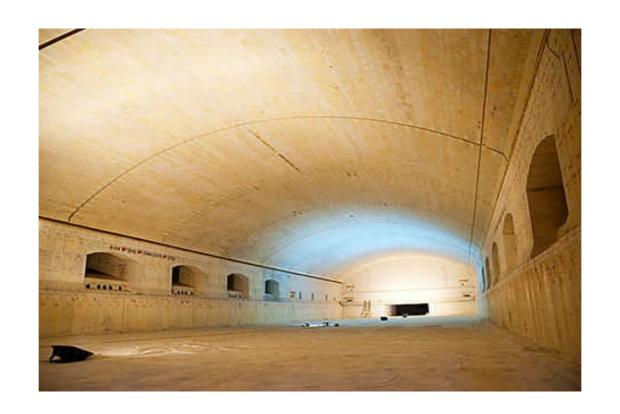
Modulo III


Il processo di fusione del vetro

La fusione di un vetro è definibile come quel processo di trasferimento di calore alla miscela di fusione o "mucchio" cioè una massa di materiali in polvere o in grani di diverse dimensioni particellari medie


Trasferimento del calore


- 1 per conduzione termica
- per irraggiamentoper convezione (ir
- 3 per convezione (in cui sono coinvolti trasferimenti di massa)


Fase I (processi 1-2)

Fase II (processo 3)

Modulo III

Variabili che condizionano il processo di fusione

Forma del mucchio — capacità del fuso di fluire evoluzione dei gas prodotti

Materie prime — composizione chimica distribuzione granulometrica decomposizione termica H_2O, CO_2 O_2, SO_2, Cl_2

Reattività dei materiali morfologia fase cristallina fasi amorfe

Contenuto di umidità fenomeni di segregazione reazioni sub-solidus

Stato fisico dei materiali macinazione pellettizzazione granulazione

Atmosfera del forno fusione a gas fusione elettrica

Storia termica preriscaldamento presinterizzazione

- 1 Rimozione del H₂O
- 2 Combustione della materia organica

3 Reazioni idrotermali

4 Reazioni allo stato solido

$$Na_2CO_3 + SiO_2 \rightarrow Na_2O \cdot SiO_2 + CO_2$$

 $Na_2O \cdot SiO_2 + SiO_2 \rightarrow Na_2O \cdot 2SiO_2$
 $Na_2O \cdot SiO_2 + Na_2O \rightarrow 2Na_2O \cdot SiO_2$

5 Inversioni cristalline

Nel primo stadio della fusione avvengono le cosiddette reazioni sub-liquidus : sono reazioni chimiche che hanno luogo a temperature inferiori a quelle in cui si osserva la comparsa del fuso e che quindi coinvolgono fasi solide o gassose. Queste reazioni sono guidate da meccanismi di trasferimento di calore , dal trasferimento di massa (come la diffusione di volume o superficiale) e dalla velocità di evoluzione dei gas prodotti, esse sono fortemente influenzate dalla natura chimico fisica e dalla storia termica del mucchio (se esso ha subito una presinterizzazione, un preriscaldamento oppure un processo di pellettizzazione ecc..).

$$Na_2CO_3 + CaCO_3 \xrightarrow{H_2O} Na_2CO_3CaCO_32H_2O$$

 $xCaCO_3 + ySiO_2 \xrightarrow{zH_2O450^\circ} xCaO \cdot ySiO_2zH_2O + CO_2$

$$CaO + SiO_2 \xrightarrow{850^{\circ} - 900^{\circ}} CaSiO_3$$

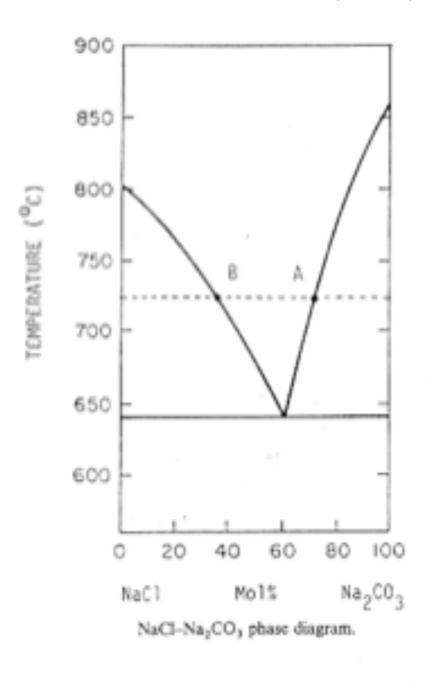
$$CaCO_3 \xrightarrow{800^{\circ} - 850^{\circ}} CaO + CO_2$$

metadiorto--

La temperatura di reazione dipende fortemente dalle dimensioni particellari

$$Pb_{3}O_{3} \xrightarrow{500^{\circ} -550^{\circ}} 3PbO + \frac{1}{2}O_{2}$$

$$2ZnO + SiO_{2} \xrightarrow{700^{\circ}} Zn_{2}SiO_{4}$$


$$SiO_{2}(\alpha) \xrightarrow{573^{\circ}} SiO_{2}(\beta)$$

1μιχρον-300micron

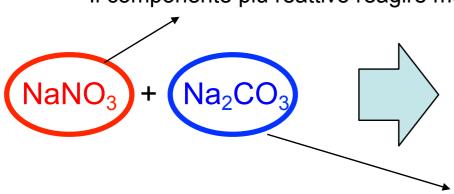
300-700°C

Effetto della addizione dei promotori di fusione (NaCI)

In questa fase inizia il processo di fusione nel quale sono coinvolti con interazioni complesse i costituenti originali del batch di partenza, i prodotti intermedi originati dalle reazioni sub-liquidus e la fase liquida di neoformazione. Si hanno reazioni tra particelle di solidi cristallini e fusi di sali inorganici, con fusi di fasi vetrose di nuova formazione o con entrambi i componenti; in questa fase della fusione i liquidi che reagiscono con le sostanze cristalline possono avere viscosità anche molto diverse tra loro: i sali fusi infatti possono avere viscosità anche molto basse, dell'ordine degli 0,1 Poise mentre i fusi vetrosi possono arrivare nella fattispecie a viscosità anche di sei ordini di grandezza superiori.

Coalescenza delle fasi liquide

Reazione SiO₂-NaCl-Na₂CO₃


Ad una temperatura T compresa tra la temperatura di eutettico e quella di fusione dei sali puri si avrà Na_2CO_3 solido ed un fuso del sale inorganico (NaCl) saturato con Na_2CO_3 (punto A). In presenza di SiO_2 il sodio presente nel fuso reagisce per formare di-silicato di sodio e quindi ulteriore Na_2CO_3 si dovrà dissolvere nel fuso per compensare quello che è stato perso per reazione con la SiO_2 .

Dopo che tutto il carbonato di sodio solido è fuso, quest'ultimo si comincia ad impoverire di sodio finché non viene raggiunto il limite di saturazione del NaCl (B). A questo punto la composizione del fuso rimarrà costante e quindi mano a mano che il Na₂CO₃ verrà consumato per reazione con la SiO₂ ulteriore NaCl precipiterà dal fuso. Quando tutto il carbonato di sodio carbonato sarà consumato la miscela finale sarà dunque costituita da SiO₂ in eccesso, dal cloruro di sodio e da silicati di sodio.

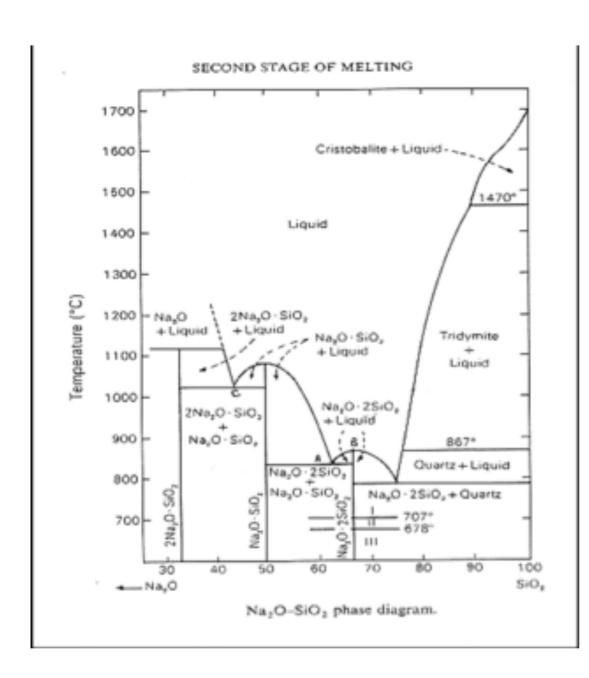
Effetto della diluizione, presenza di due sali a comune

Quando si ha la presenza di due sali non inerti si osserva la formazione di un fuso a temperatura inferiore a quella prevedibile con il diagramma di stato, questo fenomeno è dovuto all'effetto di mutua diluizione dei due sali.

Il componente più reattivo reagire meno vigorosamente

Aumento del range di temperatura di reazione

Il componente meno reattivo inizia a reagire ad una temperatura inferiore



fusi vetrosi si formano prima

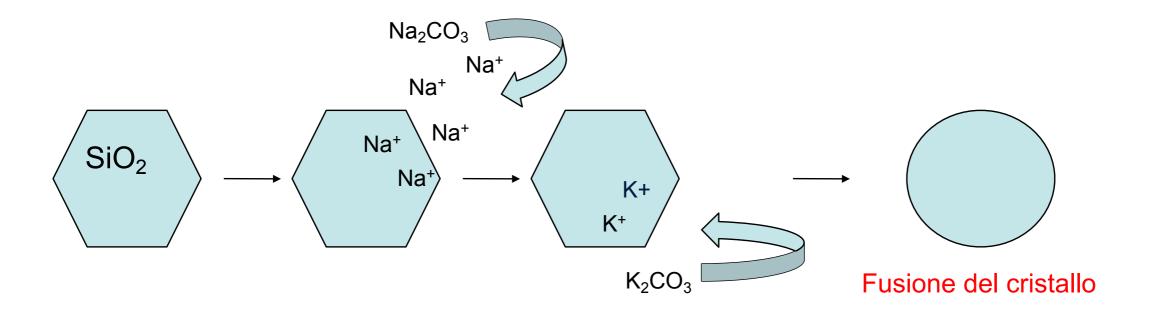
Rischio evoluzione gas ad alte T con formazione di schiume

Reazione Na₂CO₃-SiO₂

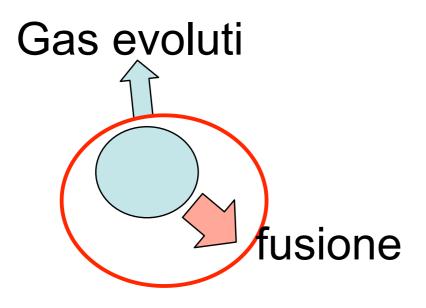
A: a 850° appare il fuso dell'eutettico tra metasilicato di sodio e disilicato di sodio

B: sopra 875° il disilicato di sodio fonde

C: sopra i 1020° si ha un esteso range di silicati fusi (eutettico ortosilicato-metasilicato)


Processo a doppio stadio

1)Na₂CO₃ fonde ed entra in contatto con il grano di silice bagnandone la superficie, si ha una vigorosa emissione di CO₂


2)Il carbonato di sodio viene consumato e inizia la reazione tra silicati alcalini fusi, silice cristallina e silicati alcalini cristallini residui

L'equilibrio di questa reazione dipende dalla temperatura e dal rapporto silice-carbonato di sodio

Reazione Na₂CO₃-K₂CO₃-SiO₂

Fusi di vetro-formatori

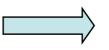
In assenza di promotori della fusione la fase vetrosa che si forma nel secondo stadio della fusione può essere molto ricca in vetro-formatori. In questo caso la progressione del processo di fusione è stabilita dalla cinetica di dissolvimento delle particelle solide nel fuso, la reazione è guidata in questo caso dalla superficie specifica delle particelle di quarzo (SiO₂), dalla pressione parziale dei gas evoluti, dalla distribuzione granulometrica e dalla densità.

Parametri che influenzano la formazione dei fusi

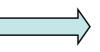
- Superficie specifica SiO₂
- Pressione parziale dei gas evoluti
- Distribuzione granulometrica
- Densità

```
Primary melts in soda-lime-silica batches
320°C
                 NaNO<sub>3</sub> (m)
624°C
                 Na<sub>2</sub>SO<sub>4</sub>-NaCl (e)
630°C
                 Na2CO3-NaCl (c)
725°C
                 Na2O.3CaO.6SiO2-SiO2-Na2O.2SiO2(e)
725°C
                 Na2CO2+CaCO2 solid solutions-Na2Ca(CO2)2 (e)
790°C
                 SiO2-Na2O.2SiO2 (e)
                 NaCl (m)
800°C
821°C
                 Na<sub>2</sub>O. 2SiO<sub>2</sub>-Na<sub>2</sub>O. SiO<sub>2</sub>-2Na<sub>2</sub>O. CaO. 3SiO<sub>2</sub> (e)
                 Na<sub>2</sub>CO<sub>3</sub>-Na<sub>2</sub>SO<sub>4</sub> (e)
830°C
840°C
                 Na<sub>2</sub>O. 2SiO<sub>2</sub>-Na<sub>2</sub>O. SiO<sub>2</sub> (e)
850°C
                 Na<sub>2</sub>CO<sub>3</sub> (m)
                 Na<sub>3</sub>SO<sub>4</sub> (m)
880°C
(m) melting, (e) eutectic
```

Effetto dei rottami di vetro


Maggiore porosità del mucchio Aggressione delle pareti di refrattario del forno Immiscibilità con il fuso di glass-forming All'aumentare della quantità di rottame si osserva una diminuzione della temperatura di evoluzione dei gas dalla miscela di fusione: in questo caso essa può essere favorita dalla maggiore facilità con cui i gas possono sfuggire dal sito di reazione infatti i rottami vetrosi hanno una temperatura di rammollimento piuttosto alta e questo permette al mucchio di conservare una certa porosità. C'è naturalmente un limite superiore alla quantità di rottame utilizzato e questo è dato dalla aggressione che il rottame fuso esercita sulle pareti del refrattario durante le fasi di riscaldamento della miscela di fusione: infatti si deve considerare che ad alta temperatura il fuso derivato da questi rottami presenta una viscosità molto bassa e se

Mediamente la quantità di vetro riciclato utilizzato in una fusione è dell'ordine del 10-20% della massa totale.


è presente in grande quantità non riesce a miscelarsi in maniera adeguata con il fuso primario formatisi dalla

Storia termica

bassa velocità di salita della temperatura

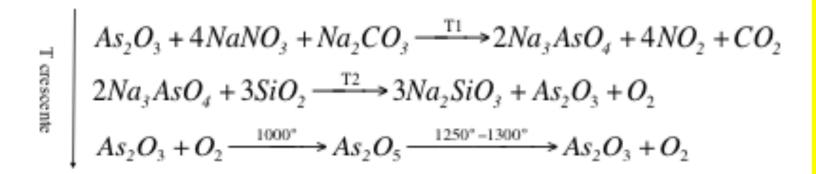
alto grado di conversione delle materie prime

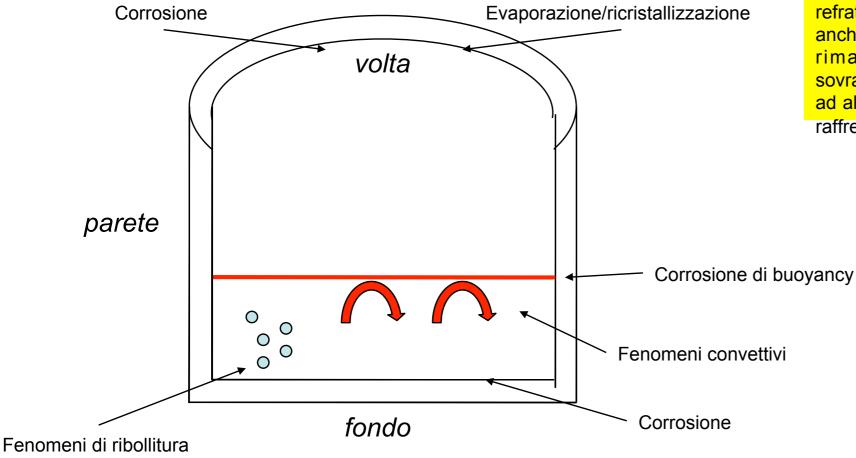
fusione delle materie prime.

Fusi viscosi o presenza di silicati refrattari

alta velocità di salita della temperatura

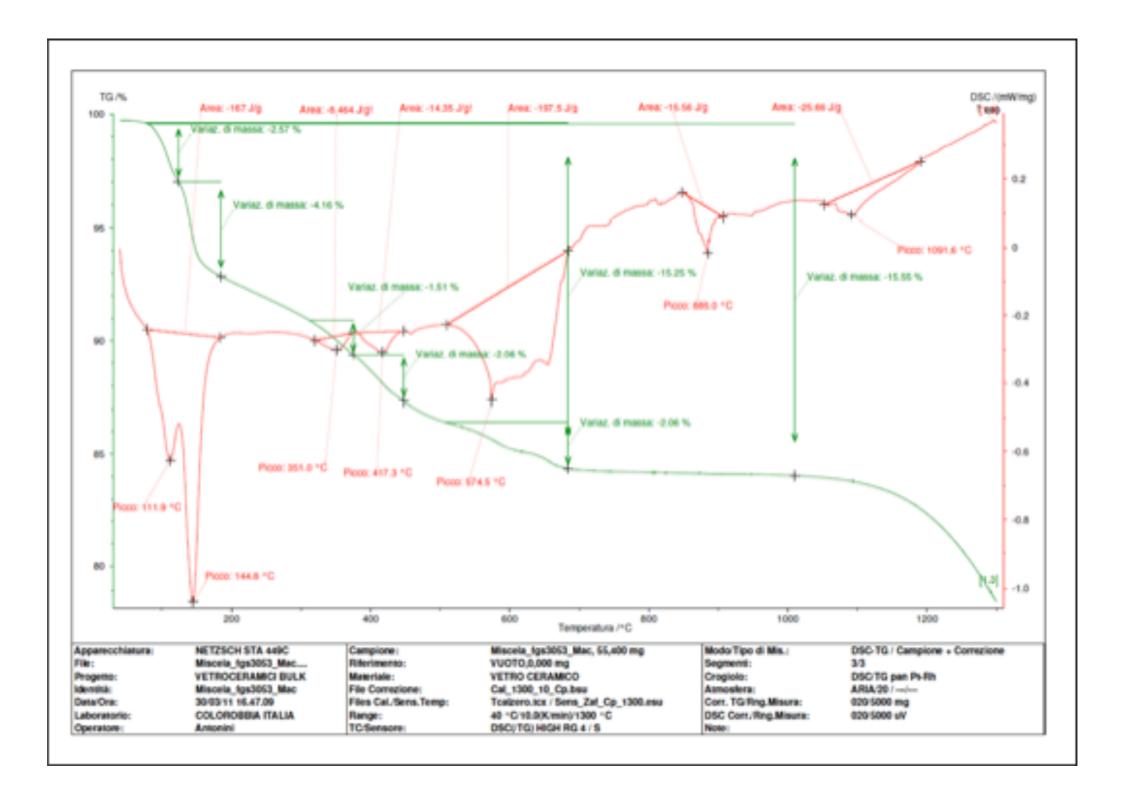
Incompletezza delle reazioni di conversioni

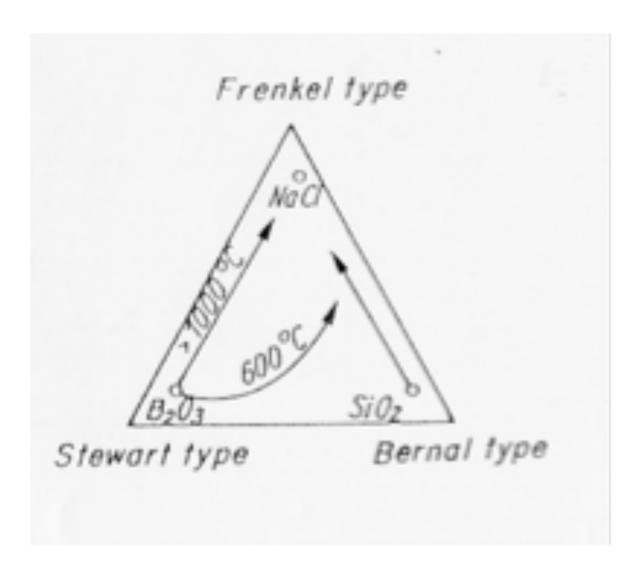



Presenza sostanze indisciolte, fusi immiscibili

Sovrasaturazione dei gas

III stadio della fusione


Agenti di refining


La permanenza di grani di ossidi refrattari ad alta temperatura in un fuso dipende dal loro limite di solubilità e dalla diffusione che a sua volta è controllata dalla composizione chimica del fuso che circonda la particella solida. Alle alte temperature del fuso si hanno viscosità molto basse, si può quindi sfruttare questo fenomeno per favorire i processi diffusivi tra fuso e grano. I cosiddetti agenti di refining permettono una forte evoluzione di gas proprio alle alte temperature alle quali la viscosità del fuso è bassa, questo da luogo ad un forte rimescolamento del fuso favorendo la diffusione degli atomi del grano refrattario nella fase fusa. Gli agenti di refining hanno anche la funzione di eliminare bolle di gas che sono rimaste intrappolate nel fuso e di ridurre la sovrasaturazione dei gas che altrimenti, disciolti nel fuso ad alta temperatura, formerebbero bolle durante la fase di raffreddamento.

Contributi eso/endo termici durante il processo di fusione di un vetro

Modelli del Fuso

Classificazione dei fusi secondo Weil

1.) Modello di Bernal

Si considera il fuso come costituito da sfere rigide che si dispongono casualmente in una scatola. Lo stato disordinato di un fuso è causato da una modesta percentuale di sfere che assumono un numero di coordinazione diverso da quello normale per un impacchettamento di sfere rigide di uguali dimensioni : 5 o 7 invece di 6 : un liquido di Bernal può quindi essere descritto da un numero non intero di coordinazione delle particelle e da una funzione di disordine. Questo fuso non contiene né aree cristalline né cavità capaci di accogliere particelle: esso viene detto "privo di difetti". A causa della sua considerevole "reticolazione" intesa come interazione tra gli atomi che lo compongono il fuso ha un'alta viscosità che favorisce in raffreddamento la formazione di vetro. (Cristobalite

2) Modello di Frenkel

Si suppone, all'opposto del modello precedente, che su scala atomica un certo numero di legami si aprano e contemporaneamente in altre zone del liquido altri legami si chiudano in modo che il fuso possa essere considerato come un *sistema dinamico di cavità e di fratture*. Questa è la situazione di un fuso molto fluido derivante dalla elevata "fessurazione" della struttura. Difficilmente un tale fuso può dare origine ad un vetro (NaCl).

3) Modello di Stewart

Nel fuso sono presenti degli "aggregati molecolari" con un certo grado di ordine comunque inferiore a quello di regioni cristalline (regioni cibotattiche) questo modello può spiegare il comportamento di certi liquidi che appaiono birifrangenti. Le regioni cibotattiche possono condurre alla compresenza nel fuso di più fasi che tendono a scomparire all'aumentare della temperatura.

Fenomeni di immiscibilità

SiO₂-B₂O₃

Forte tendenza alla immiscibilità

SiO₂-B₂O₃₋Ml₂O

Bassa tendenza alla immiscibilità

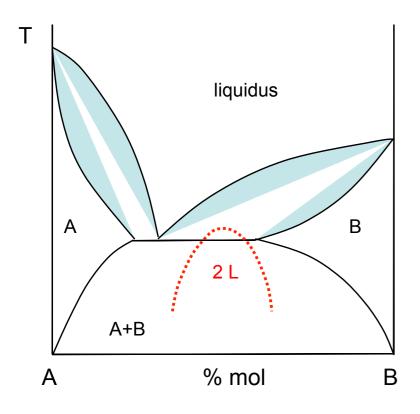
SiO₂-B₂O₃₋M^{II}O

Tendenza più pronunciata alla immiscibilità

SiO₂-B₂O₃-M₂O₃

Immiscibilità in specifiche regioni composizionali

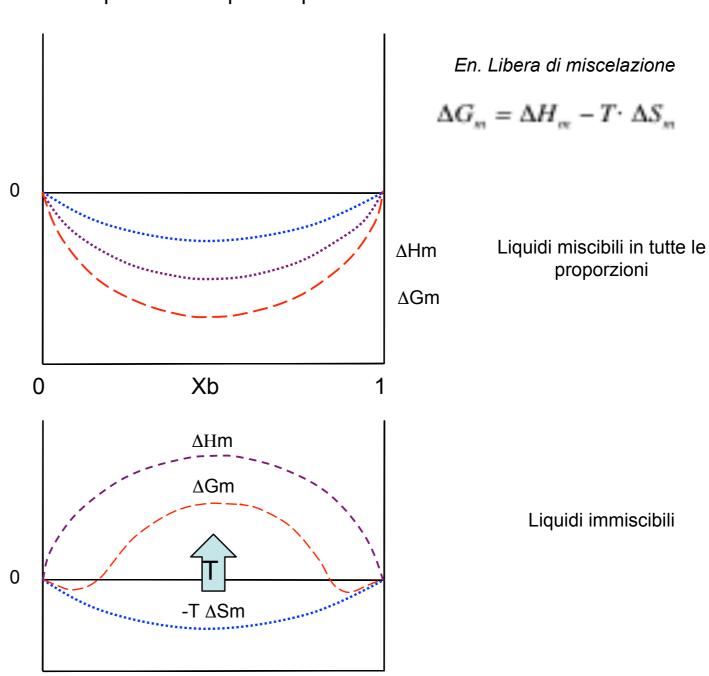
 $SiO_2-B_2O_3-M^{IV}O_2$

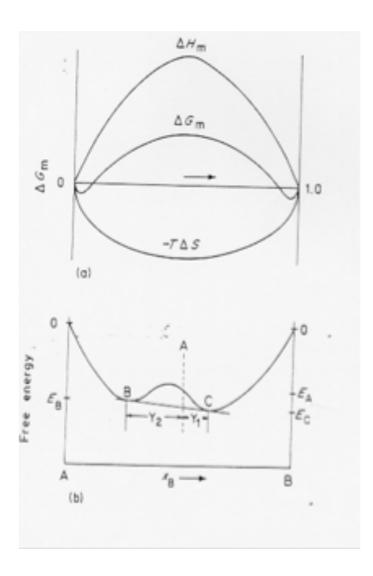

Forte tendenza alla immiscibilità

 $SiO_2-B_2O_3-MV_2O_5$

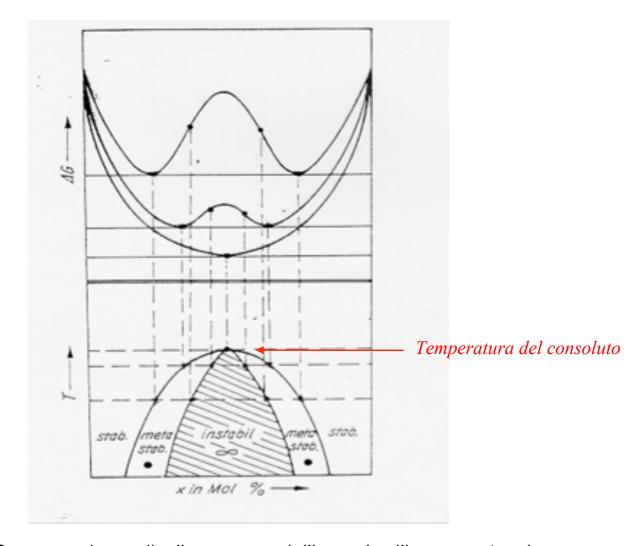
Forte tendenza alla immiscibilità

Fenomeni di immiscibilità

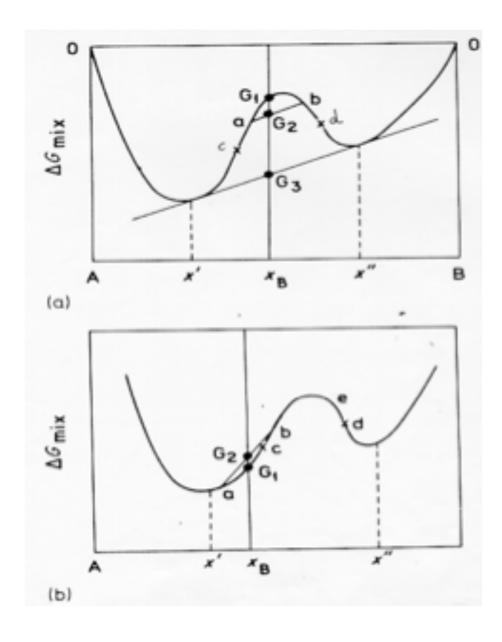

Immiscibilità sub-liquidus


Termodinamica della separazione liquido-liquido

Xb


0

Fenomeni di immiscibilità

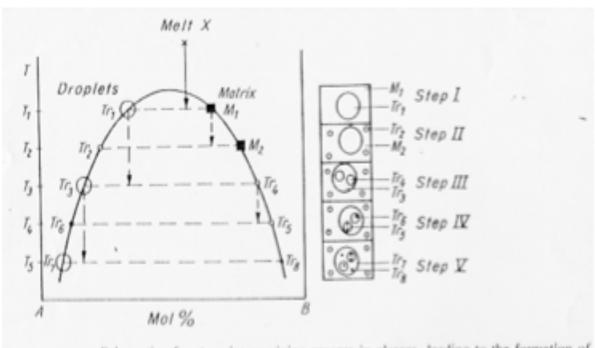


Raffreddando un liquido di composizione A l'energia libera del sistema si abbassa da una situazione iniziale Ea fino a raggiungere una situazione di equilibrio metastabile con la separazione di due fasi liquide di composizione B e C e con concentrazioni relative Y_1 ed Y_2 date dalla regola della leva

Se osserviamo il diagramma dell'energia libera contro la temperatura in parallelo a quello della temperatura contro la composizione si nota nella parte inferiore la comparsa di una campana di immiscibilità. All'interno della campana esiste un'area (tratteggiata in figura) detta di decomposizione spinodale e limitata dai punti di flesso della curva dell'energia libera. All'interno di questa zona un fuso si separerà spontaneamente in due liquidi strutturalmente interconnessi a patto di avere sufficiente mobilità atomica. Se la composizione del fuso si trova invece all'esterno della regione spinodale ma all'interno della curva a campana (detta binodale) la separazione in due liquidi non avverrà spontaneamente ma richiederà un processo di nucleazione e successiva crescita che porterà alla formazione di gocce isolate.

Decomposizione spinodale-binodale

Decomposizione spinodale

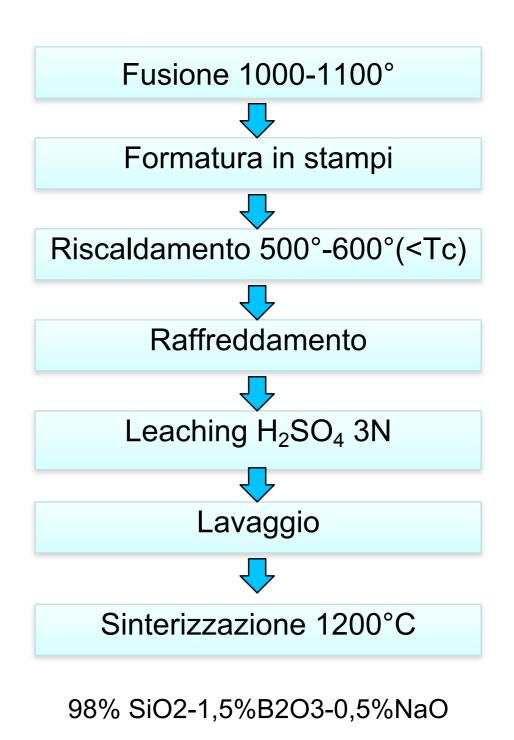

Sistema tenuto ad una temperatura T inferiore a quella del consoluto Tc : se Xb è tra i punti di flesso si separeranno inizialmente due fasi liquide (a) e (b) con en- libera media G_2 . Col progredire della smiscelazione le due fasi cambieranno composizione fino ad arrivare all'equilibrio (X' e X'') con en. libera G_3 . Decomposizione favorita termodinamicamente : struttura interconessa di fasi

Decomposizione binodale

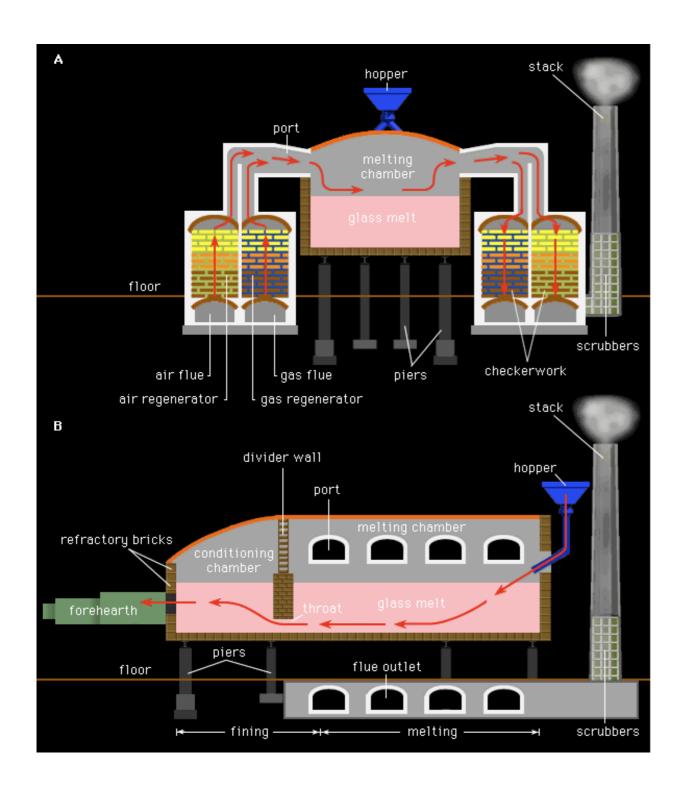
Xb è al di fuori dei punti di flesso, in questo caso una piccola variazione composizionale che portasse alle fasi (a) e (b) causerebbe **sempre** un aumento di energia libera da G_1 a G_2 . La separazione di fase sarà originata da un processo attivato di nucleazione e successivo accrescimento. Decomposizione sfavorita termodinamicamente : dispersione di gocce isolate

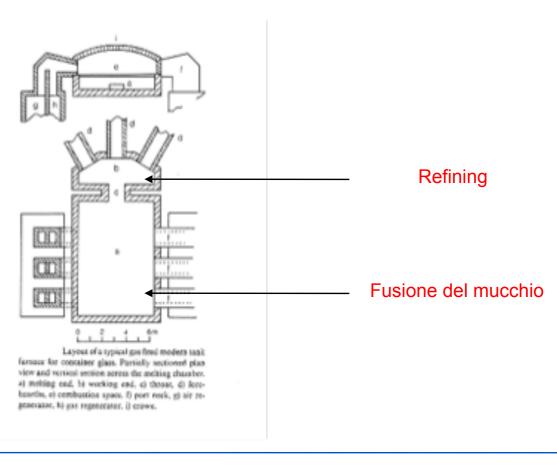
Separazione multifase

Sistema BaO-SiO2-B2O3


Schematic of a stepwise unmixing process in glasses, leading to the formation of more than two microphases. (Right) Schematic of the resulting microstructures which could be proved unequivocally by electron microscopy.

Processo Vycor


Sistema Na₂O-SiO2-B2O3



Giovanni Baldi Modulo III

Esempi di forni industriali

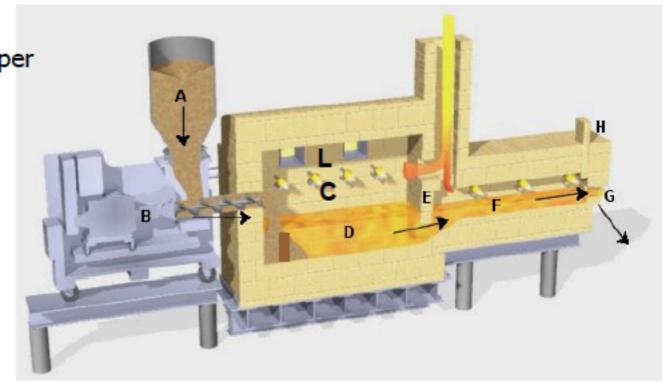
Il rapporto tra la lunghezza L e larghezza B del forno deve essere calcolata in modo da raggiungere un corretto profilo longitudinale di temperatura , la larghezza deve inoltre essere sufficiente a permettere una combustione efficiente (nel caso di forni a gas) ma non tale da compromettere la stabilità della volta. In genere il rapporto L/B per forni di piccole-medie dimensioni (20 m³) è circa 1,2 mentre per forni di grandi dimensioni (90 m³) può arrivare a 2,3. La profondità del fuso deve essere progettata in modo da impedire un raffreddamento degli strati interni del fuso e contemporaneamente permettere moti convettivi di calore, inoltre particolare cura deve essere messa affinché il refrattario del fondo non si riscaldi troppo divenendo sensibile a fenomeni di corrosione. La profondità del fuso è anche legata direttamente alla trasparenza del fuso alla radiazione infrarossa e comunque non eccede mai i limiti inferiori e superiori di 0,75-1,3 m.

I forni a rigenerazione (Martin-Siemens)

- Questi forni sono in grado di recuperare in circolo il calore prodotto.
- L'efficienza di produzione è pari a 2t/m² e un consumo pari a 10.000KJ/Kg, efficienza 30%, produzioni giornaliere fino 700t/giorno, temperatura di fusione di 1400°C.

□A e B: Feeder e tramoggia per l'immissione delle polveri dei precusori

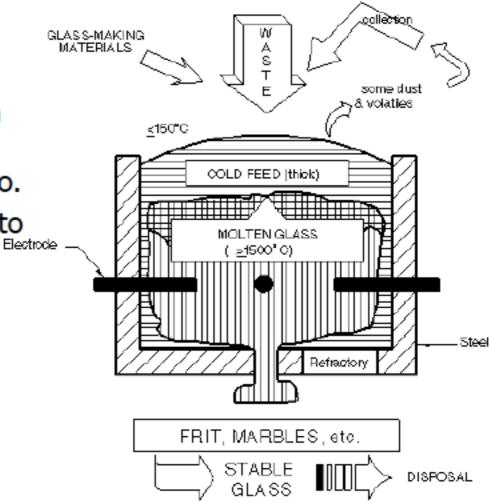
□C: bruciatori


D: fuso

■E: setto di separazione

□F: fuso separato

L: uscita gas esausti


ai recuperatori

I forni elettrici (Cold crown)

□Utilizzano contenitori in Molibdeno, elettroni in Mo, grafite o SnO₂, consumo pari a 3.000KJ/Kg, produzioni tipiche 4t/giorno, massime 120t/giorno.

□Sono meno inquinanti in quanto i fumi vengono abbattuti in scrubbers

Electric Furnace Vitrification