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Brain Oxytocin: A Key Regulator of Emotional and Social Behaviours
in Both Females and Males
I. D. Neumann

Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg, Regensburg, Germany.

The neuropeptide oxytocin (OXT) is currently attracting considerable

attention as a result of the discovery of the amazing behavioural

functions it regulates, especially in the context of social interac-

tions. A broad variety of behaviours, including maternal care and

aggression, pair bonding, sexual behaviour, and social memory and

support, as well as anxiety-related behaviour and stress coping, are

modulated by brain OXT. These discoveries make this neuromodula-

tor ⁄ neurotransmitter system of the brain a promising target for

psychotherapeutic intervention and treatment of numerous psychi-

atric illnesses, for example, anxiety disorders, social phobia, autism

and postpartum depression.

Together with the related nonapeptide arginine vasopressin

(AVP), OXT is an essential part of the hypothalamo-neurohypophy-

sial system. Since the original description of this system in fish

by the German biologist Ernst Scharrer in 1928 (1), this well-

defined arrangement of magnocellular neurones at the base of

the brain has been one of the most valuable model systems in

neuroendocrinology and neuroscience. Outstanding discoveries

have been made through studying the OXT and AVP systems.

These include the very first characterisation of a neuropeptide by

DuVigneaud and, independently, by Acher in the 1950s, important

insights into the bursting pacemaker activity of neurosecretory

neurones (2), the discovery of neuropeptidergic pathways within

the brain (3), novel views of neuronal-glial interactive plasticity (4,

5), and the development of neuropeptide receptor antagonists (6).

Furthermore, the OXT system served as a suitable model arrange-

ment for discovering important molecular and cellular mechanisms

of neuropeptide synthesis, precursor processing, and cellular traf-

ficking (7, 8), as well as the stimuli and neuronal mechanisms

of intracerebral neuropeptide release within distinct brain regions

(9–11). These important findings have, in parallel, raised the ques-

tion of the behavioural consequences of local OXT release and

subsequent OXT receptor-mediated actions within brain target

regions (12, 13).
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In addition to various reproductive stimuli, the neuropeptide oxytocin (OXT) is released both

from the neurohypophysial terminal into the blood stream and within distinct brain regions in

response to stressful or social stimuli. Brain OXT receptor-mediated actions were shown to be

significantly involved in the regulation of a variety of behaviours. Here, complementary method-

ological approaches are discussed which were utilised to reveal, for example, anxiolytic and

anti-stress effects of OXT, both in females and in males, effects that were localised within the

central amygdala and the hypothalamic paraventricular nucleus. Also, in male rats, activation of

the brain OXT system is essential for the regulation of sexual behaviour, and increased OXT sys-

tem activity during mating is directly linked to an attenuated anxiety-related behaviour. More-

over, in late pregnancy and during lactation, central OXT is involved in the establishment and

fine-tuned maintenance of maternal care and maternal aggression. In monogamous prairie

voles, brain OXT is important for mating-induced pair bonding, especially in females. Another

example of behavioural actions of intracerebral OXT is the promotion of social memory pro-

cesses and recognition of con-specifics, as revealed in rats, mice, sheep and voles. Experimental

evidence suggests that, in humans, brain OXT exerts similar behavioural effects. Thus, the brain

OXT system seems to be a potential target for the development of therapeutics to treat anxiety-

and depression-related diseases or abnormal social behaviours including autism.
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Methodological approaches to reveal behavioural
consequences of OXT release

Several complementary methodological approaches are possible and

necessary in order to characterise specific behavioural functions of a

given neuropeptide, such as OXT, within the brain. Results obtained

using different approaches are often controversial and inconsistent,

and the behavioural effects vary depending on the species, strain,

gender, behavioural test conditions, mode of drug administration

and other experimental manipulations. Clearly, the pharmacological

manipulation of the OXT system and subsequent examination of

behavioural consequences is the major methodological approach.

This includes central [intracerebroventricular (icv), local] administra-

tion of synthetic OXT at varying doses, or of selective OXT receptor

antagonists in order to acutely block receptor-mediated actions and

to reveal behavioural effects of endogenous OXT. However, OXT

shows structural similarities with AVP, and cross-interactions

between these neuropeptides and their receptors are likely (14).

Therefore, more selective techniques can be used in order to

sequence-specifically manipulate either OXT or OXT receptor synthe-

sis, including antisense oligodeoxynucleotides targeting the OXT or

OXT receptor gene (15–18). Recently, virally mediated gene transfer

has been introduced for selective overexpression of AVP (19–21) or

OXT (22) receptor synthesis within specific brain regions and associ-

ated with relevant behavioural alteration(s). Another important

approach is the use of knockout and transgenic animals, and both

OXT and OXT receptor knockout animals have been extensively char-

acterised with respect to a variety of behaviours (23–25; for reviews,

see 26, 27). All of these techniques have their own advantages and

limitations, but each of them makes a valid contribution to the com-

pletion of the puzzle of the complex behavioural functions of neuro-

peptides such as OXT. However, it seems essential to keep in mind

that manipulation of a single brain component is likely to co-affect

multiple related systems. This holds true, in particular, if chronic

treatments or transgenic animals are used, or if the approach

adopted has long-term neuronal consequences, making the unam-

biguous interpretation of data more difficult.

In our laboratory, we also employ an alternative approach to

manipulation of the OXT system, and monitor patterns of OXT

release into the extracellular fluid within a brain area of interest

during the display of a particular behaviour. Both intracerebral mic-

rodialysis and push-pull perfusions are suitable for quantifying the

dynamics of local release of OXT or other neuropeptides (e.g. AVP

and prolactin) and neurotransmitters in a freely behaving animal.

Usually, these intracerebral microperfusions are performed prior to,

during and after exposure to a behavioural challenge, for example

during exposure to a conspecific intruder, either during maternal

defence or in the resident-intruder test. Monitoring of local release

patterns of a given neuropeptide during ongoing behavioural per-

formance in rodents is challenging, but possible using microdialysis.

Thus, even during the display of aggressive (28) or sexual (29)

behaviour, dialysates can be sampled without interference with the

behaviour of interest. In order to reveal the behavioural conse-

quences of the local release patterns of OXT, we can then adminis-

ter either a receptor ligand or a receptor antagonist locally via

inverse microdialysis (retrodialysis) over the entire observation per-

iod. Importantly, microdialysis ⁄ retrodialysis can also be performed

in conscious mice (30).

Monitoring the release patterns within the brain is especially

important, as changes in OXT concentrations in blood plasma occur

independently of those in the extracellular fluid of an intracerebral

target region. Thus, plasma OXT does not necessarily reflect the

dynamics of intracerebral, locally restricted release (31). Further,

OXT cannot cross the blood–brain barrier in physiologically relevant

concentrations and, therefore, stimulus-dependent alterations in

plasma OXT should not be behaviourally relevant. However, in

humans, plasma OXT is frequently taken as an indication of general

OXT system activity, including intracerebral OXT release, an interpre-

tation that is clearly limited, but at least partly useful.

Stimuli and mechanisms of OXT release within the brain have

been extensively reviewed elsewhere (9, 11, 32). Here, I will focus

instead on the involvement of brain OXT in complex stress-related

and social behaviours.

Oxytocin, emotional behaviours and stress coping

Brain OXT has generally been described as an important regulator

of the stress response, with both physiological and behavioural

aspects (for reviews, see 27, 33, 34). In this context, the regulation

of anxiety-related behaviour has attracted particular attention.

Acute or chronic central administration of synthetic OXT was found

to exert an anxiolytic effect both in female and in male rats, and in

mice (35–37). In order to reveal the role of endogenous brain OXT

in the regulation of anxiety-related behaviour in more detail, brain

OXT receptors were blocked using an OXT receptor antagonist (38),

specifically within the central amygdala (33). However, the effects

of antagonist treatment on anxiety were only visible in pregnant or

lactating, but not in virgin female or male, rats. Thus, it appears

likely that activation of the brain OXT system, as seen in the peri-

partum period in females, is a prerequisite for an anxiolytic effect

of this system (38, 39). In support of this, up-regulation of OXT

receptor expression within the central amygdala of virgin female

rats, using an adenoviral vector to simulate activity levels in the

peripartum period, significantly reduced anxiety levels compared

with respective control virgin females (22).

Moreover, important, although controversial, evidence for an

involvement of the endogenous OXT system in regulating anxiety

behaviour comes from studies with OXT knockout mice, with

females showing an increased level of anxiety (27, 40). In contrast,

the social anxiety of female OXT knockout mice, as indicated by

stretched approaches towards the intruder, was lower than in

respective controls, indicating that OXT may also be differentially

involved in anxiety-related behaviours in social versus nonsocial

contexts (41).

To date, the anxiolytic effects of OXT in rats have been local-

ised within the central amygdala (33, 42, 43) and within the

hypothalamic paraventricular nucleus (PVN) (36). Within the latter,

we could show that OXT receptor-mediated anxiolytic effects

involve the activation of the extracellular signal-regulated kinase

(ERK1 ⁄ 2) signalling cascade. Local blockade of the OXT-induced
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ERK1 ⁄ 2 phosphorylation by local pre-infusion with a MAP kinase

kinase (MEK) inhibitor prevented the anxiolytic effect of OXT (36).

In addition to the regulation of anxiety levels, OXT also modu-

lates other aspects of behavioural stress coping. For example,

released within the central amygdala during forced swimming, OXT

promotes a passive coping style and increases the time spent float-

ing, which might be mediated via an inhibitory influence on the

local release of excitatory amino acids (44). Interestingly, within the

central amygdala, OXT actions on the electrophysiological activity

of distinct neuronal populations have been described (45).

Brain OXT also plays a major role in the regulation of complex

physiological stress responses including stress-induced neuronal

activation (46, 47) and activity of the hypothalamo–pituitary–adre-

nal (HPA) axis (35, 38, 47, 48), which have been reviewed elsewhere

(27, 33, 34). Specifically, OXT was found to inhibit HPA axis

responses to a wide variety of physical, emotional and pharmaco-

logical stressors, and may thus make an important contribution to

the attenuated stress responsiveness found in pregnancy and dur-

ing lactation. These neuroendocrine adaptations, which have been

described in both rodents and humans, are mainly reflected by

lower peak levels of corticosterone ⁄ cortisol and corticotrophin in

response to acute stressor exposure.

The fine-tuned modulation of both emotional and neuroendo-

crine stress responses by OXT, i.e. inducing a state of reduced anxi-

ety and increased calmness accompanied by blunted plasma

glucocorticoid responses, is likely to play an important role in the

peripartum period. In pregnancy and during lactation, the activity

of the brain OXT system is significantly elevated, and this should be

beneficial both for the offspring and for the mother. The offspring

clearly benefit from OXT-induced promotion of maternal behaviour

and reproduction-related physiological adaptations, including the

prevention of excessive circulating glucocorticoid levels. Importantly,

high brain OXT activity might also be beneficial for the maternal

brain to prevent emotional maladaptations caused by the dramatic

changes in circulating sexual steroids (for reviews, see 49, 50).

Oxytocin and maternal care and aggression

As a circulating hormone, OXT controls important reproductive

functions such as labour and milk ejection in the peripartum period.

Simultaneously, central release of OXT during parturition and suck-

ling (51) suggests that synergistic effects of OXT released both into

maternal blood and within the maternal brain are important for

offspring survival. Indeed, since the first discovery that central OXT

can induce maternal behaviour in virgin rats (13), growing evidence

has revealed a significant contribution of brain OXT to both the

establishment and maintenance of fine-tuned maternal care in sev-

eral species. These effects of OXT have been recently reviewed by

several experts of the field (52–56).

In addition to maternal care, most lactating mammals show a

remarkable level of aggression, thus protecting their offspring against

potential social threats. Thus far, controversial results exist as to the

involvement of OXT in maternal aggression (for reviews, see 57).

In order to reveal a possible role of OXT in the regulation of

maternal aggression, we monitored OXT release within the central

amygdala and the hypothalamic PVN in lactating residents during

the maternal defence test (58, 59). An increased release of OXT

was found in rats, which displayed a particularly high level of

maternal aggression, whereas it was unaltered (PVN) or even

decreased (amygdala) in dams, which were less aggressive. Impor-

tantly, the amount of locally released OXT was correlated with the

aggressive behaviour displayed by the dam (59). Blockade of local

OXT receptor-mediated actions by local administration of an OXT

receptor antagonist [des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT, kindly

provided by Dr Maurice Manning, Toledo, OH, USA] via retrodialysis

lowered the level of aggression, further supporting a functional

involvement of OXT in the regulation of maternal aggression

(Fig. 1).

In contrast to these findings providing robust evidence for OXT

as an important regulator of maternal aggression, very little is

known about OXT actions on male aggression (but see 60, 61).

However, OXT effects on various other aspects of social behaviour

have also been reported in males.

Oxytocin and sexual behaviour

Brain OXT plays an important role in the regulation of male and

female sexual behaviour. In both males and females, a significant

stimulus for OXT secretion into peripheral blood is sexual activity

and, in humans, orgasm (62–64). Given the importance of brain

OXT in social interactions (24, 65) and the fact that sexual interac-

tion is the most intense social contact found, mating behaviour is

also likely to be a relevant stimulus for the intracerebral OXT sys-

tem. In support of this suggestion, increased Fos expression was

found in OXT neurones within the PVN in response to mating, sug-

gesting an increased activity of OXT neurones (66, 67). Further,

using micro-dialysis, we recently showed an elevated OXT release

within the PVN of male rats during successful mating (29). The fact

that local OXT release already started to rise as a result of the pres-

ence of the primed female behind a perforated wall, which allowed

olfactory and visual contact, but not physical contact or mating,
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Fig. 1. Local retrodialysis of an oxytocin (OXT) receptor antagonist (OXT-A)

bilateral into the central amygdala (left) and the paraventricular nucleus

(PVN) during the maternal defence test reduces maternal aggressive behav-

iour of lactating rat dam. *P < 0.05 versus vehicle. Adapted from Ref. 59.
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indicates that the presence of a receptive female, even without

mating, partially activates the OXT system.

Several lines of experimental evidence suggest that brain OXT

facilitates erectile function and male sexual behaviour in mice, rats,

rabbits and monkeys (for reviews, see 68, 69), The PVN seems to be

a major target of OXT actions possibly involving autoexcitatory neu-

ropeptide actions (70). In support of this theory, electrolytic or

chemical excitotoxic lesions of the PVN abolish the pro-erectile

effect of OXT (71, 72). The brain OXT system is also involved to a

significant extent in female sexual behaviour, at least in rats, spe-

cifically promoting lordosis behaviour in an oestrogen-dependent

manner (15, 73, 74).

In an attempt to reveal the behavioural consequences of sexual

activity and mating-induced central OXT release, we tested the anx-

iety-related behaviour of male rats on the elevated plus-maze and

in the light-dark box. In comparison with single-housed males, and

males that were housed with a non-primed female for 30 min,

mated males showed a reduced anxiety-related behaviour 30 and

360 min after mating (29; Fig. 2A). This anxiolytic effect of sexual

activity could be blocked by an OXT receptor antagonist adminis-

tered icv immediately after mating (Fig. 2B).

Together these results provide evidence that activation of the

endogenous brain OXT system, seen both in females at the end of

pregnancy and during lactation and in males during sexual activity,

exerts beneficial effects, in particular inhibiting stress-induced

behavioural and ⁄ or neuroendocrine responses (Fig. 3).

Oxytocin and pair bonding

The best experimental model with which to study pair bonding and

its neuropeptidergic regulation is the monogamous prairie vole

(Microtus ochrogaster). Like humans, these voles display a remarkable

diversity in social organisation including, for example, the formation

of enduring pair bonds and biparental behaviour (for reviews, see

75, 76). Initially, comparison of OXT and AVP receptor distribution

in distinct brain regions of monogamous and non-monogamous

vole species revealed a higher density of OXT (caudate putamen

and nucleus accumbens) and AVP receptors (ventral pallidum, med-

ial amygdala and mediodorsal thalamus) in monogamous prarie

voles (77, 78). Both OXT and AVP were demonstrated to play a

major role in pair bonding in a gender-specific fashion. Although

both peptides may facilitate pair-bond formation in either sex (79),

AVP seems to be more important in males, whereas OXT is more

critical in females. The mechanism underlying this sex difference in

behavioural response to OXT and AVP is unclear, because receptor

densities in the brain are similar in males and females. Acute

administration of OXT into the cerebral ventricles of female prairie

voles accelerated pair bonding (80), whereas application of an OXT

receptor antagonist blocked mating-induced pair bonding in

females. Combined, these results suggest that central release of

OXT also occurs during mating in females (81). Possible target

regions of OXT include the nucleus accumbens and the prefrontal

cortex (for a review, see 76), both being involved in reward, emo-

tional evaluation of stimuli and fear expression.

Oxytocin and social cognition

Given the importance of OXT in a variety of complex social behav-

iours, as discussed above, it seems logical to hypothesise an

involvement of OXT in social memory processes and recognition of

conspecifics. Indeed, central administration of OXT exerted dose-

dependent effects on social memory in male rats (82). Further, OXT

in the olfactory bulb can facilitate and prolong social recognition in

male rats (83, 84), an effect that is likely to involve a critical inter-

action with local norepinephrine (for a review, see 9).

In support of an involvement of brain OXT in social memory, OXT

knockout mice show deficits in social recognition, but normal non-

social learning and memory abilities (23, 24, 41, 85). These deficits

are reversible by OXT administration specifically into the central

amygdala (86). Interestingly, male mice lacking the gene for CD38,

a transmembrane protein essential for neuronal OXT release, show

substantial impairment of social memory and recognition of con-
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Fig. 2. Anxiolytic effect of sexual activity and mating in male rats (A) and

involvement of brain oxytocin (OXT), but not vasopressin (AVP) (B). (A) Male

rats were mated with a primed female, housed with a non-primed female

or single-housed for 30 min in the light phase. (B) Immediately after sexual

activity, mated males were treated with icv vehicle (VEH), an OXT receptor

antagonist (OXT-A) or an AVP receptor antagonist, before their anxiety level

was scored as percentage of time spent in the open arms of the plus-

maze. Data are means + standard error of the mean. *P < 0.05 versus sin-

gle-housed and non-mated males after analysis of variance. Adapted from

Ref. 29.
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Fig. 3. Examples of behavioural consequences of high brain oxytocin activ-

ity induced by physiological stimulation or external manipulation.
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specific females (87). This is in further agreement with the impor-

tance of central OXT release for social memory.

Also, in female rats and mice, OXT is an important factor in

social cognition. In female rats, icv administration of an OXT antag-

onist interfered with the animals’ ability to establish normal social

memory (88) (for a review, see 89). In female OXT knockout mice,

the essential role of OXT in social memory has also been demon-

strated in the context of the Bruce effect. The Bruce effect refers

to the ability of a female mouse to discriminate between her mate

(and remain pregnant) and a novel mate (with the consequence of

interrupted pregnancy). OXT knockout females failed to remain

pregnant if re-exposed to either their mate or a novel male. Only

females that were allowed to remain with their mate maintained

pregnancy (90). This inability to distinguish between the mate and

a novel male in females with deficits in the OXT systems further

demonstrates the importance of OXT in long-term social memory as

well as short-term social recognition. Recently, a conditional OXT

receptor knockout mouse has been created which lacks the OXT

receptor in distinct forebrain regions and shows comparable deficits

in social recognition (91).

Additional examples demonstrating the essential role of OXT in

social memory and recognition come from experiments performed

in ewes and in monogamous prairie voles, respectively. In ewes,

lamb recognition and bonding after birth could clearly be related to

the release of OXT, for example within the olfactory bulb (92). Thus,

OXT seems to be the common signal for the development of selec-

tive offspring recognition. In the monogamous prairie vole, social

recognition of the mate is a prerequisite for monogamous behav-

iour and the ability to form a selective pair bond. Similar to the

offspring bonding in ewes, OXT plays a critical role in social bond-

ing, especially in female prairie voles, as discussed above in more

detail (76, 81). Thus, parturition- and mating-induced stimulation of

OXT release within distinct brain regions seems to be a promoting

factor for social cognition, i.e. lamb recognition and pair-bond for-

mation, respectively.

There is also evidence for an OXT-mediated facilitation of spatial

memory, especially in lactation. In multiparous mice, an improved

spatial memory has recently been found in comparison with virgin

control mice which might importantly improve the search for addi-

tional food resources (93) and the rapid and safe return of the

mother to the offspring. Blockade of brain OXT receptors in lactat-

ing mice inhibited their improved spatial memory abilities, hippo-

campal long-term potentiaton and CREB phosphorylation (93).

Thus, the specific sequence of events, including up-regulation of

brain OXT receptors, central OXT release within distinct brain

regions during reproduction and the subsequent OXT-induced

increase in hippocampal CREB phosphorylation and plasticity, is

likely to underlie the improvement of long-term spatial memory

found in motherhood.

Behavioural actions of OXT in humans

Although detailed experimental data is limited, there is evidence to

support similar behavioural effects of brain OXT in humans. For

example, indirect evidence for anxiolytic and anti-stress effects of

OXT comes from nursing mothers, who are more likely to describe

positive mood states, reduced anxiety levels and increased calmness

[(94); for reviews see 95, 96]. Moreover, breast-feeding shortly

before exposure to a psychological stressor reduced the emotional

response compared with bottle-feeding lactating mothers (94). As

suckling triggers OXT release within various brain regions in sheep

and rodents (51, 92, 97, 98), an activated brain OXT system, in

addition to other factors (for a review, see 49), is likely to contrib-

ute to these behavioural consequences of nursing.

In men, a comparable physiological stimulation, which is likely to

trigger a high level of activity of the endogenous brain OXT system,

is sexual activity (see above, Fig. 3). Increased plasma OXT levels

were found during warm social contact with the partner (e.g. hug-

ging) (99) and during orgasm (63, 100, 101). There is convincing

anecdotal and experimental evidence of a link between sexual activ-

ity and sedation, increased relaxation and calmness in the post-coi-

tal period (102, 103). Therefore, given the involvement of OXT in

stress regulation, as discussed above, it is likely that OXT contrib-

utes to these positive effects (29) also in humans. Additionally, OXT

was shown to exert reinforcing and rewarding actions in rodents

(104). Therefore, the possibility also exists that enforced and rein-

forced trust in the sexual partner also involves brain OXT.

This hypothesis is substantiated by the finding that intranasal

OXT makes humans more trusting (105). Moreover, reduced levels

of anxiety to psychosocial stress were described in subjects treated

with intranasal OXT and receiving social support (106). Consistent

with this, intranasal OXT reduced neuronal responses within the

amygdala to fearful social stimulation in healthy men, as revealed

by magnet resonance imaging studies (107). Thus, OXT receptor-

mediated actions are involved to a significant extent in processing

social stimuli and in modulating pro-social responses also in

humans. Importantly, OXT seems to increase the ability to read the

mental state of others using social cues from facial expressions

(108). In contrast, intranasal AVP decreased perception of friendly

faces and increased perception of anger and threat in neutral

human facial expressions (109, 110). Thus, AVP and OXT play impor-

tant, although different, roles in social communication. In this con-

text it is interesting to note that a link between autism spectrum

disorders and polymorphisms in the OXT receptor gene and changes

in OXT availability have been described (111–113).

In summary, receptor-mediated effects of OXT within the brain

may have far-reaching implications for the complex regulation of

emotionality, stress coping and social behaviours in both sexes.

Consequently, the brain OXT system is a promising target for the

development of novel therapeutic strategies to treat anxiety- and

depression-related diseases or abnormal social behaviours.
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