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Abstract
Stress is a part of every life to varying degrees, but individuals differ
in their stress vulnerability. Stress is usefully viewed from a biological
perspective; accordingly, it involves activation of neurobiological sys-
tems that preserve viability through change or allostasis. Although
they are necessary for survival, frequent neurobiological stress re-
sponses increase the risk of physical and mental health problems,
perhaps particularly when experienced during periods of rapid brain
development. Recently, advances in noninvasive measurement tech-
niques have resulted in a burgeoning of human developmental stress
research. Here we review the anatomy and physiology of stress re-
sponding, discuss the relevant animal literature, and briefly outline
what is currently known about the psychobiology of stress in human
development, the critical role of social regulation of stress neurobi-
ology, and the importance of individual differences as a lens through
which to approach questions about stress experiences during devel-
opment and child outcomes.
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INTRODUCTION

Threats to well-being, whether physical or
psychological, are components of life expe-
rience. Individuals differ markedly, however,
in the frequency with which they experience
stressful life events and their vulnerability
or resilience to stressful challenges (Akil &
Morano 1995). Stress, although often studied
as a psychological construct, may be viewed
from a biological perspective (Dantzer 1991).
Accordingly, stress responses are composed
of the activation of neurobiological systems
that help preserve viability through change
or allostasis (McEwen & Seeman 1999). Al-
though necessary for survival, the effects of
frequent physiological stress responses may
increase the risk of future physical and mental
health problems. The impact of physiologi-
cal stress reactions on the developing brain
may be of particular note, helping to explain
how adverse rearing experiences heighten the
risk of behavioral and emotional problems
in children and adolescents (Gunnar 2000,
Heim & Nemeroff 2001, Sanchez et al. 2001).
In the past 20 years, advances in measure-
ment techniques have allowed developmen-
tal researchers to assess physiological stress
responses in children both in the laboratory
and under naturalistic conditions (Gunnar &
Talge 2006). Consequently, the field of devel-
opmental stress research has burgeoned. In
the following review, we outline the anatomy
and physiology of stress, discuss the animal lit-
erature relevant to the study of stress in human
psychobiological research, and briefly outline
what is currently known about the develop-
ment of stress reactivity and regulation, the
social regulation of stress in human develop-
ment, the impact of maltreatment on stress
neurobiology, and the importance of individ-
ual differences as a lens through which to ap-
proach questions about stress and experience
during development.

NEUROANATOMY AND
PHYSIOLOGY

Stress responses in mammals are effected
by two distinct but interrelated systems:
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the sympathetic-adrenomedullary (SAM;
Frankenhaeuser 1986) system and the hypo-
thalamic-pituitary-adrenocortical (HPA;
Stratakis & Chrousos 1995) system. The
SAM system is a component of the sym-
pathetic division of the autonomic nervous
system, releasing epinephrine (adrenaline)
from the medulla or center of the adrenal
gland. Increases in circulating epinephrine
facilitate rapid mobilization of metabolic
resources and orchestration of the fight/flight
response (Cannon 1929). The HPA system,
in contrast, produces glucocorticoids (cor-
tisol in humans, corticosterone in rodents;
hereafter GCs) which are steroid hormones.
Unlike epinephrine, which does not cross the
blood-brain barrier to a significant degree,
the brain is a major target of GCs (Bohus
et al. 1982). Also unlike epinephrine, GCs
production takes some time (approximately
25 minutes to peak levels), and many of
its impacts on the body and brain occur
through the changes in gene expression (de
Kloet 1991). Consequently, the impacts of
GCs are slower to develop and continue
for longer periods (de Kloet et al. 1996).
As discussed more fully below, the role of
the HPA system in stress is complex, and its
functions are not fully captured by reference
to the fight/flight response (Sapolsky et al.
2000). Regulation of both the SAM and
HPA systems converges at the level of the
hypothalamus, which integrates autonomic
and endocrine functions with behavior
(Palkovits 1987). Furthermore, inputs to the
hypothalamic nuclei that orchestrate HPA
and SAM responses to psychosocial stressors
involve cortico-limbic pathways (Gray &
Bingaman 1996). Each system is described in
detail below.

The Sympathetic Adrenomedullary
System

The chromaffin cells of the adrenal medulla
are secretor cells developmentally and func-
tionally related to postganglionic sympa-
thetic neurons and are considered part

Stress:
psychological
condition in which
the individual
perceives or
experiences
challenges to
physical or
emotional well-being
as overwhelming
their ability and
resources for coping

SAM: sympathetic
adrenomedullary
(system)

Hypothalamic-
pituitary-
adrenocortical
(HPA) system:
describes the
complex chain of
physiological events
that characterizes
one of the stress
response systems

Glucocorticoids
(GCs): a family of
steroid hormones
(such as or cortisol in
humans and
corticosterone in
rodents) produced by
the adrenal cortex

Cortico-limbic
pathways:
interconnected
group of cortical and
subcortical structures
in the human brain
that constitute the
neural substrate for
emotion, motivation,
emotional learning,
and regulation

Epi: epinephrine

NE: norepinephrine

CRH:
corticotrophin-
releasing
hormone

ACTH:
adrenocorticotropic
hormone

of the sympathetic nervous system (see
Figure 1) (Vollmer 1996). They are inner-
vated by sympathetic preganglionic neurons
residing in the intermediolateral gray matter
of the spinal cord (Tasaptsaris & Breslin 1989).
Sympathetic preganglionic neurons send ax-
ons through the ventral root of the spinal
cord and form cholinergic synapses with the
chromaffin cells. When these cells are stimu-
lated, they secrete catecholamines, predomi-
nantly epinephrine (Epi) but also some nor-
epinephrine (NE) (Vollmer 1996). Epi and
NE bind to various adrenoreceptors in multi-
ple target organs and thus play multiple roles
in fight/flight reactions (Tasaptsaris & Breslin
1989). For example, they both increase heart
rate and stroke volume (and hence, cardiac
output) and cause vasodilatation in muscles
and constriction of blood vessels in the skin
and gut. These changes ensure blood supply
to the brain and muscles. Critically, Epi stim-
ulates glycogenolysis in the liver, resulting in
increased serum levels of glucose and there-
fore energy to fuel defensive responses. Al-
though neither Epi nor NE cross the blood-
brain barrier, the peripheral actions of these
catecholamines are paralleled in the brain by
NE produced by the locus coeruleus (Morilak
et al. 2005). Its role in response to psychoso-
cial threats is to support vigilance, arousal, and
narrowing of attention, along with participat-
ing in processes that activate the other arm of
the mammalian stress system, the HPA axis.

The Limbic Hypothalamic-Pituitary-
Adrenocortical Axis

The cascade of events that leads to the pro-
duction of glucocorticoids by the adrenal cor-
tex begins with the release of corticotrophin-
releasing hormone (CRH) and arginine va-
sopressin (AVP) by cells in the paraventricu-
lar nuclei of the hypothalamus (see Figure 2;
reviewed in Gunnar & Vazquez 2006). CRH
and AVP travel through small blood vesicles
to the anterior pituitary, where they stimu-
late the release of adrenocorticotropic hor-
mone (ACTH) (Stratakis & Chrousos 1995).
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T1

T5

L3

Spinal Cord

Greater
Splanchnic
Nerve

Adrenal
Medulla

Lesser
Splanchnic
Nerve

Epinephrine and
Norepinephrine
released to 
general circulation

Dorsal root
Spinal cord

Preganglionic
neuron

Intermediolateral
gray matter

Ventral
root

Adrenal
Medulla

Prevertebral
ganglion Postganglionic

neuron

Postganglionic
fibers to 
peripheral autonomic
effector organs

T12

T9

Paravertebral
ganglia

Prevertebral
Celiac
ganglion

Paravertebral
ganglion

Figure 1
Anatomy of the sympathetic adrenomedullary (SAM) system. The SAM system is a component of the
sympathetic nervous system. Its cell bodies (preganglionic neurons) are located in the interomediolateral
(IML) cell column and exit the spinal cord via the ventral root to form cholinergic direct synapses on the
chromaffin cells of the medulla of the adrenal glands. When stimulated, these chromaffin cells secrete
catecholamines, epinephrine (80%), and norepinephrine (20%). The chromaffin cells of the adrenal
medulla thus are equivalent to postganglionic sympathetic neurons. Secreted into general circulation,
they act as hormones, affecting organs and tissues via adrenergic receptors (alpha and beta) that are
activated at lower levels of epinephrine than norepinephrine. Adrenomedullary output greatly enhances
sympathetic neural activity.

Sympathetic-
adrenomedullary
system: a primary
biological system
controlling stress
response. Outflow of
sympathetic
autonomic nervous
system that triggers
rapid physiological
and behavioral
reactions to
imminent danger or
stressors

MRs:
mineralocorticoid
receptors

GRs: glucocorticoid
receptors

ACTH interacts with receptors on the cortex
of the adrenal gland to stimulate the produc-
tion and release of GCs into general circula-
tion. GCs enter into the cytoplasm of cells
throughout the body and the brain, where
they interact with their receptors (de Kloet
1991). The activated receptors then enter the
nucleus of the cell, where they regulate the
transcription of genes with GC-responsive re-
gions. The action of GCs on target tissues in-
volves changes in gene transcription, which
explains why the effects of elevated GCs may
take many minutes to hours to be produced
and may continue to exert effects on phys-
iology and behavior for prolonged periods
(Sapolsky et al. 2000).

The effect of GCs depends upon the re-
ceptors with which they bind. There are
two GC receptors: mineralocorticoid recep-
tor (MR) and glucocorticoid receptor (GR)
(de Kloet 1991). Outside the brain, GCs op-
erate through GRs because of the presence of
an enzyme, 11-beta hydroxysteroid dehydro-
genase (11β-HSD), that prevents GCs from
binding to MRs. In the brain, where 11β-
HSD is minimally expressed, GCs bind to
both MR and GR. Indeed, GCs have higher
affinity (i.e., bind more readily) to MRs than
to GRs, a fact that is critical in the regula-
tion of both basal and stress responses of the
HPA system (reviewed in Gunnar & Vazquez
2006). Because of their differential affinities
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Figure 2
The anatomy of the hypothalamic-pituitary-adrenocortical (HPA) system and the structures that are
important in its regulation. Also depicted is the activation (+) and negative feedback inhibition (−)
pathways of the HPA system. Increases in glucocorticoids (GCs) are initiated by the release of
corticotropin-releasing hormone/arginine vasopressin (CRH/AVP) from the medial parvocellular region
of the paraventricular nucleus (PVN) in the hypothalamus. Negative feedback inhibition operates
through GCs acting at the level of the pituitary, hypothalamus (HYP), and hippocampus (HC). ACTH,
adrenocorticotropic hormone; AMY, amygdala; GABA, gamma aminobutyric acid; HC, hippocampus;
HYP, hypothalamus; NTS, nucleus of the tractus solitarius; PFCtx, prefrontal cortex. Reprinted with
permission from Gunnar & Vazquez 2006.
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for GCs, MRs are 80%–90% occupied when
GCs are in basal ranges (de Kloet 1991). By
contrast, GRs are occupied only at the peak
of the circadian cycle or when stressors stimu-
late GC elevations over basal concentrations.
GRs mediate most of the stress effects of
glucocorticoids, whereas MRs tend to medi-
ate most basal effects, which include effects
such as maintaining responsiveness of neu-
rons to their neurotransmitters, maintaining
the HPA circadian rhythm (highest at wak-
ening and lowest 30 minutes after the onset
of the long sleep period each day), and main-
taining blood pressure (Sapolsky et al. 2000).
Although these basal effects are often consid-
ered distinct from stress effects of GCs, they
play a permissive role in stress. Basal levels al-
low effective fight/flight responses by allow-
ing NE and Epi to have maximal impacts on
their target tissues.

GR-mediated effects often oppose the
ones effected through MR, leading some re-
searchers to argue that stress resilience and
vulnerability involve the ratio of MR-to-GR
activation (de Kloet 1991). For example, GRs
impair neural plasticity and the processes in-
volved in learning and memory as evidenced
by their impact on hippocampal neurons. By
contrast, basal levels of GCs acting via MRs
enhance synaptic plasticity as evidenced by
a reduction of the refractory period of hip-
pocampal neurons. MRs facilitate cerebral
glucose availability, whereas GRs inhibit glu-
cose utilization throughout the brain, thus
endangering cell survival. GRs also activate
pathways back to the PVN, which results in
inhibition of CRH production (negative feed-
back) and thus a termination of the HPA stress
response. It has long been a mystery why GRs,
which are activated during stress responses of
the HPA system, should operate to produce
such deleterious effects. Why would this sys-
tem have evolved to impair functioning under
conditions of threat? One argument is that
the suppressive effects mediated by GRs are
necessary to reverse acute response to stres-
sors and ultimately facilitate the recovery of
cellular homeostasis (Sapolsky et al. 2000).

Only when stress is prolonged do the costs
of suppressive effects begin to outweigh their
benefits.

Maintaining viability through activation of
SAM and HPA reactions has been termed
allostasis, or the maintenance of stability
through change (McEwen & Seeman 1999).
The costs imposed by frequent or prolonged
stress responses are described as allostatic
load. In addition, the opposing effects of MRs
and GRs combined with the differential affin-
ity of GCs for these receptors explains why the
relationship between GCs and adaptive func-
tioning frequently takes an inverted-U func-
tion (Sapolsky 1997). Both chronically low
and high levels of GCs are associated with
nonoptimal adaptation. In contrast, moderate
(or controlled elevations) are associated with
physical and behavioral health.

Psychosocial Stressors: The Role of
Corticotrophin-Releasing Hormone

Both the SAM and HPA systems are cen-
trally modulated by limbic brain circuits
that involve the amygdala, hippocampus, and
orbital/medial prefrontal cortex [see Figure 3
(as reviewed in Gunnar & Vazquez 2006)].
These structures/circuits allow psychological
stressors to activate stress responses. The fast,
SAM-mediated, fight/flight response utilizes
CRH-producing neurons located in the cen-
tral nucleus of the amygdala, the noradren-
ergic neurons located in the locus coeruleus,
and other aminergic cells in the brain stem
(Morilak et al. 2005). The locus coeruleus
regulates the SAM response through its
projecting NE neurons. These pathways,
flowing through the lateral hypothalamus, ac-
tivate sites in the brain stem, which in turn di-
rectly activate the sympathetic preganglionic
neurons unleashing the release of Epi from
the adrenal medulla. The central nucleus of
the amygdala and CRH-mediated changes are
also involved in activating the HPA response
to psychosocial stressors (Shekhar et al. 2005).
Here, however, pathways to hypothalamic
CRH-producing cells that stimulate the HPA
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NE

NE

CRH

Anterior
cingulate

Orbital 
PFC

Amygdala Hippocampus

Locus
coeruleus

Hypothalamus 

ACTH Pituitary EPI 

GC

Medulla

Cortex

Adrenal

Brain stem
nuclei

Spinal 
cord

BNST

ACH

Figure 3
Three levels of neurobiological organization of the stress system responsive to psychological stressors.
The cortico-limbic level of organization involves the anterior cingulate (ACC) and orbital frontal cortex
(OFC), which relay information to subcortical structures involved in the stress response. The ACC and
OFC are reciprocally interconnected with each other and with the amygdala, which has connections with
the hippocampus and bed nucleus of the stria terminalis (BNST). The hypothalamic–brain stem level of
organization involves the hippocampus and brain stem structures such as the locus coeruleus (LC), which
releases norepinephrine (NE) to brain areas involved in alerting. The BNST provides pathways into the
paraventricular nucleus (PVN) of the hypothalamus, which produces corticotrophin-releasing hormone
(CRH) and arginine vasopressin (AVP), while the hippocampus and regions in the medial frontal cortex
(e.g., ACC) maintain feedback control of the PVN. Considering the neural-to-adrenal level of analysis,
nuclei in the lateral hypothalamus activate highly interconnected nuclei in the brain stem, including the
parabrachial nuclei, that regulate the sympathetic (NE and epinephrine, Epi) and parasympathetic
(acetylcholine, Ach) nervous systems via pathways traveling through the spinal cord to preganglionic
nuclei or to target organs (e.g., the adrenal medulla). The production of CRH and AVP by the PVN
regulates activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the production of
glucocorticoids (GCs) as depicted more fully in Figure 2. Adapted with permission from Gunnar &
Davis 2003.

cascade are indirect, operating through mul-
tisynaptic pathways via the bed nucleus of the
stria terminalis that converge on the paraven-
tricular nuclei in the hypothalamus (Herman
& Cullinan 1997, Herman et al. 2002). These
multiple, converging pathways allow modula-
tion of the strength of the HPA responses in
relation to the state of the body, time of day,
and current levels of circulating hormone.

Because of the critical role of amygdalar
CRH in the activating pathways for both SAM
and HPA responses, there is increasing atten-
tion to the role of amygdalar CRH and its fam-
ily of receptors in orchestrating stress reac-
tions (Heinrichs et al. 1995, Nemeroff 1996,
Swiergiel et al. 1993). Reacting to psycho-
logical stressors requires appraisal by higher
brain structures such as the cingulate cor-
tex and the orbital/medial prefrontal cortex
(Barbas 1995, Diorio et al. 1993). Threat
appraisal also involves subcortical structures

such as the bed nucleus of the stria terminalis
and the hippocampus, as well as the further
integration by hypothalamic and brain stem
structures (Davis et al. 1997). CRH receptors
in all of these regions affect components of
stress responding (Bale & Vale 2004). For ex-
ample, CRH infused into the locus coeruleus
in rodents intensifies anxiety-related behav-
iors, and neurons in the locus coeruleus are
sensitized to CRH after being exposed to psy-
chological stressors (Butler et al. 1990). As
with GCs, there are two prominent CRH
receptors (CRH-1 and CRH-2), which tend
to mediate opposing actions (Bale & Vale
2004). CRH-1 appears to mediate many of the
anxiety-related actions of CRH, while CRH-
2 mediates more of the stress effects on vege-
tative functions. Consistent with this distinc-
tion, CRH-1 receptors are more abundant in
cortico-limbic pathways that mediate fear and
anxiety-related behaviors, whereas CRH-2
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receptors are found predominantly in sub-
cortical brain regions (Sanchez et al. 2000,
Vythilingam et al. 2002). It is unfortunate for
students of human development that CRH
cannot be noninvasively measured. Further-
more, although CRH can be assayed in sam-
ples of cerebral spinal fluid (CSF), CSF con-
centrations do not allow differentiation of the
brain locus of production.

Summary

The neuroanatomy and neurophysiology of
the stress system involves the SAM and HPA
systems. Both systems involve the adrenal
gland and its secretions that are released into
the bloodstream. Both also are orchestrated
by activity in the central nervous system. Un-
like the SAM system, however, the brain is a
major target organ for the steroid hormones
produced by the HPA axis. Also, unlike the
SAM system, whose role in stress can be
fairly simply described as “fight/flight,” the
role of the HPA system is more complex. Its
basal activity appears to support or permit
acute fight/flight responses, while its response
to stressors serves to suppress the impact of
fight/flight reactions. Over prolonged periods
of chronic activation, the suppressive effects
of the elevated GCs and the wear and tear
of frequent SAM responses can have delete-
rious effects on physical and mental health.
However, in the short term, robust, well-
orchestrated activations of these systems tend
to support adaptive functioning. This, plus
the well-described inverted U-shaped func-
tions relating SAM and HPA stress responses
to a variety of adaptive functions, should cau-
tion researchers against thinking of increases
in SAM and HPA activity as necessarily index-
ing risk of poor outcomes. Finally, our increas-
ing understanding of the role of amygdalar
CRH in orchestrating responses to psychoso-
cial threats suggests that in many cases it is
the activity of CRH that should be tracked by
researchers studying links between emotional
behavior and physiological responses to stres-
sors. Unfortunately, CRH cannot be nonin-

vasively measured and thus is not a part of the
toolbox for researchers studying psychosocial
stress and development in humans.

ANIMAL STUDIES OF EARLY
EXPERIENCE AND STRESS
NEUROBIOLOGY

More than a decade of research using animal
models has shown that in many mammalian
species, early experiences shape the neuro-
biological systems involved in stress reactiv-
ity and regulation, and some of these effects
appear permanent. The results of these stud-
ies have shaped the formulation of questions
about early experiences and stress vulnerabil-
ity in human development; thus, it is useful
to outline the findings of the animal models
here.

The Rodent Model

The rat has been the focus of much of this
research (Sanchez et al. 2001). In the rat,
the period between 4 and 14 days after birth
is one during which it is difficult to pro-
duce elevations in ACTH and GCs to stres-
sors that provoke responses in older animals
(Rosenfeld et al. 1992). Termed the rela-
tive stress hyporesponsive period (SHRP), it
has been assumed that this period evolved
to protect the developing brain from poten-
tially deleterious effects of elevated GCs and
the other neurochemicals associated with the
mammalian stress response (de Kloet et al.
1988). The SHRP appears to be maintained
by very specific stimuli that pups receive from
the dam. If the dam is removed for 12 to 24
hours, marked activation of the HPA system
and elevated brain levels of CRH are noted
(Suchecki et al. 1993). However, if during
this time maternal stimulation is mimicked by
stroking the pup with a wet paintbrush and
infusing milk into its stomach via a cannula,
HPA and central (brain) CRH responses are
controlled (Cirulli & Alleva 2003).

We now know that not only deprivation
of maternal care but also normal variations
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in rat mothering impact the developing neu-
robiology of stress (see review by Meaney &
Szyf 2005). Dams vary in how much they
lick and groom their pups. In comparison
with low-licking and -grooming dams, high-
licking and -grooming dams have pups that,
as adults, are less fearful and better able to
contain and terminate stress reactions of the
HPA axis (Caldji et al. 1998). The molecu-
lar events set into motion by maternal care
are increasingly understood. Particularly dur-
ing the first week of the life in the rat,
maternal licking and grooming regulate the
extent to which GR genes in the hippocam-
pus become methylated (Weaver et al. 2001).
Methylation effectively silences genes. Lick-
ing and grooming reduce methylation of hip-
pocampal GR genes. GR genes determine
how many hippocampal glucocorticoid recep-
tors an animal will have. Because hippocam-
pal GRs are involved in terminating stress
responses of the HPA system, high levels of
hippocampal GRs mean efficient control of
HPA stress response, whereas low levels mean
poor or sluggish regulation, more prolonged
stress reactions, and vulnerability to allostatic
load over the animal’s lifetime (Meaney & Szyf
2005, Weaver et al. 2001). These epigenetic
effects of maternal care are potentially irre-
versible, except through pharmacological ma-
nipulations that induce widespread demethy-
lation (Weaver et al. 2005). This is a power-
ful example of how stress neurobiology can
be programmed by social experiences during
sensitive periods of development.

The impact of early social stimulation be-
comes obvious when typical caregiving pat-
terns are disrupted (for reviews, see Cirulli &
Alleva 2003, Sanchez et al. 2001). Two closely
related paradigms have been studied most:
daily separations extending over the period of
the SHRP that last for 3 to 15 minutes and
similar daily separations that last for several
(typically 3) hours. Strikingly, 15 minutes has
a markedly different consequence than does
180 minutes of separation daily. In compari-
son with nonmanipulated dams and pups, the
pups who experience 15 minutes of separa-

Sensitive periods of
development:
periods during which
an experience (or its
absence) has a more
marked impact on
the neural
organization
underlying a
particular skill or
competence

tion daily (termed “handling”) become more
stress resilient, whereas those experiencing
180 minutes of separation daily (termed “ma-
ternally separated”) become more stress vul-
nerable. Relevant findings include evidence
that separated animals, compared with con-
trol and handled animals, exhibit larger air-
puff startle responses, greater freezing and
anxiety behaviors to cat odor, and two- to
threefold greater ACTH and glucocorticoid
responses to restraint stress as adults (Cirulli
& Alleva 2003). In addition, they also display
evidence of anhedonia; mild cognitive im-
pairments, especially on hippocampally me-
diated tasks; and greater consumption of al-
cohol (Sanchez et al. 2001). These behaviors
correspond to increased CRH expression in
the amygdala and bed nucleus of the stria ter-
minalis, decreased GR in the hippocampus
and consequently impaired negative feedback
regulation of the HPA axis, increased NE in
the locus coeruleus, and down-regulation of
adrenergic receptors, among other changes
that reflect shaping of hyperstress reactivity
at multiple levels of the central nervous sys-
tem (Ladd et al. 2000).

The difference between 15 minutes and
180 minutes of maternal separation appears
to be conferred via differences in maternal be-
havior. After brief separations, dams increase
their licking and grooming, whereas repeated
three-hour separations appear to disorganize
the dam, reducing licking and grooming of
her pups. Some of the effects of maternal
separation appear to be relatively permanent.
However, some effects appear to be responsive
to postinfancy modification by placing the ju-
venile animal in complex environments that
stimulate exploration and expose the animal
to high levels of social stimulation and novelty
(Francis et al. 2002). Such enrichment expe-
riences do not increase the previously mater-
nally separated animal’s hippocampal GR, but
the experiences do appear to reduce activation
of cortico-limbic fear circuits in response to
novelty and threat in adulthood. Whether the
continued deficit in hippocampal GR confers
a risk for stress vulnerability in response to
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Attachment:
psychosocial process
resulting in strong
emotional bond with
a particular person
and deriving security
from physical and
psychological
contact with that
attachment figure

chronic, rather than acute, stressors later in
life is not yet known.

Early Adverse Experience in
Nonhuman Primates

It is generally assumed that events, whether
they are positive or negative, have less of an
effect on structures and circuits that are al-
ready well developed than on those that are
rapidly developing (Dobbing 1981). Nonhu-
man primates are born more mature than
are rats; thus, we would expect that post-
natal experiences would have somewhat dif-
ferent effects in the primate (for reviews,
see Gunnar & Vazquez 2006, Sanchez et al.
2001). This appears to be true, despite the
fact that, as in rats, disruptions of parental
care in nonhuman primates also affect the
neural substrates of stress vulnerability and
resilience.

Nonhuman primates form specific attach-
ments to caregivers (Suomi 1995). Separation
from the attachment figure provokes acute be-
havioral distress and increases activity of the
HPA and SAM systems (Levine & Wiener
1988). Behavioral distress, however, does not
necessarily mirror physiological stress reac-
tions. For example, if the infant monkey can
see and call to its mother, vocal distress and
behavioral agitation are much greater than if
it is isolated from any contact. Nonetheless,
physiological stress responses, particularly of
the HPA system, are much greater under con-
ditions of isolation (Bayart et al. 1990, Smoth-
erman et al. 1979). Studies of the impact of dif-
ferent pharmacological manipulations during
separation also demonstrate that behavioral
distress and physiological stress responses are
dissociable (Kalin et al. 1988, 1989). Critically,
increases in HPA activity appear to corre-
spond more closely with activity of amygdalar
CRH and activation of fear circuits (Kalin
et al. 1989). Notably, infant primates can gain
some reduction in both distress vocalizations
and physiological stress reactions when they
are provided with surrogate caregivers dur-
ing separation (reviewed in Levine & Wiener

1988). Consistent with the principles of at-
tachment theory (Bowlby 1969), access to
a secure base provided by the attachment
figure or attachment surrogate reduces the
probability of HPA/CRH stress reactions that
could have long-term consequences on brain
development.

Studies of nonhuman primates also
demonstrate that poor rearing conditions,
including peer-only rearing, isolation rear-
ing, repeated separations, and conditions that
disrupt responsive maternal care can have
long-term impacts on the neurobiology of
stress and negative emotionality (reviewed in
Sanchez et al. 2001). For example, variable
foraging paradigms that result in neglectful
maternal care also produce offspring who as
adults are more fearful, low in dominance,
high in brain levels of CRH, and who ex-
hibit persistent alterations in somatostatin and
metabolites of serotonin, dopamine, and NE
(Coplan et al. 1996, Rosenblum & Andrews
1994, Rosenblum et al. 1994). However, the
long-term effects of social deprivation on the
HPA axis are unclear (Mason 2000). For ex-
ample, 2.5-year-old monkeys reared in iso-
lation for the first year of life exhibited no
differences in hypothalamic-CRH expression
when compared with maternally reared ani-
mals (Sanchez et al. 1999). Similarly, unlike in
the rat, no one has yet to demonstrate changes
in hippocampal GR. Rather, the levels of stress
neurobiology that are disturbed appear to in-
volve the cortico-limbic circuits that evaluate
and regulate responses to psychosocial threat,
circuits that are still rapidly developing after
birth in the monkey as they are in the human
child.

POSTNATAL HUMAN
DEVELOPMENT AND STRESS
BIOLOGY

Neurobiological systems involved in stress in-
clude genetic, organ, behavioral, and emo-
tional components that mature and become
more organized as children develop. Below
is an overview of the development of the
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components of the stress system, with partic-
ular emphasis on the HPA axis.

Infancy and Early Childhood

In adults, cortisol is usually bound to proteins
(e.g., corticosteroid-binding globulin; CBG)
(Rosner 1990). However, CBGs in newborns
are initially low, although they increase over
the first six months after birth (Hadjian et al.
1975). As a result, unbound levels of corti-
sol decrease slightly over the initial months
after birth, while plasma or total cortisol in-
creases. Only free cortisol can bind to its
receptors and have biological effects; there-
fore, despite low plasma levels of cortisol at
birth, the levels of biologically active cortisol
in newborns are enough to have clear phys-
iological effects (Gunnar 1992). Newborns
can mount physiologically significant corti-
sol and ACTH responses to aversive medical
procedures (blood draws, physical examina-
tions, and circumcision) (reviewed in Gunnar
1992). Newborns, however, do not show the
typical adult rhythm in cortisol production,
characterized by higher levels in the morning
at wake-up that decrease toward the afternoon
and evening. They show two peaks, 12 hours
apart, that do not depend upon the time of
day (Klug et al. 2000). But by three months, a
qualitative shift in physiological development
takes place, and the single early morning cor-
tisol peak and evening nadir (lowest level) are
generally established (Matagos et al. 1998).
The diurnal rhythm also continues to develop
over infancy and early childhood, reflecting
changes in daytime sleep patterns (Watamura
et al. 2004). Specifically, until children give up
their daytime naps, decreases in cortisol from
mid-morning to mid-afternoon are not ob-
served; after this, the diurnal rhythm of chil-
dren is consistent with that of adults.

As in the newborn period, two-month-
old babies increase cortisol significantly to
medical examinations and also fuss and cry
when they are examined (Larson et al. 1998).
Around three months, there is a diminishing
of the HPA response to stressors such as phys-

Cortisol: arguably
the most powerful
human
glucocorticoid.
Essential for
regulation and
support of vital
functions including
metabolism, immune
response, vascular
tone, and general
homeostasis

ical examinations, but this does not extend
to decreased behavioral distress (Larson et al.
1998). Furthermore, across the first year of life
it becomes increasing difficult to provoke cor-
tisol increases to many mild stressors (stranger
approach, strange events, 3- to 30-minute sep-
arations, and inoculations; reviewed in Gun-
nar & Donzella 2002). Indeed, by one year
of age many infants show no evidence of in-
creases in cortisol to stressors that typically
provoke significant behavioral distress reac-
tions. Both physiological changes in the sys-
tem, such as improved negative feedback reg-
ulation of the axis, and decreased sensitivity of
the adrenal cortex to ACTH may partially ac-
count for the diminution of the HPA stress re-
sponse (Lashansky et al. 1991). In addition, as
described below, the child’s access to support-
ive adult care plays an increasingly salient role
in buffering the activity of the HPA compo-
nent of the stress system. Indeed, by the end of
the first year of life, infants in supportive care-
giving relationships appear to have entered
the human functional equivalent of the ro-
dent stress-hyporesponsive period (reviewed
in Gunnar 2003).

As in the primate and rodent, behavioral
distress is an unreliable index of HPA activa-
tion in young children. In the first weeks of
life, this is demonstrated strikingly through
studying infants with colic (White et al. 2000).
Infants with colic, who by definition exhibit
markedly high levels of crying, tend to ex-
hibit low basal levels of cortisol and produce
changes similar to those of noncolic babies in
cortisol and heart rate in response to distress-
ing events. By the time infants have formed
attachment relationships to one or a few care-
givers, the presence and history of responsive-
ness of the attachment figure both influences
whether infants exhibit cortisol increases to
stressors and whether behavioral distress cor-
relates with these increases (reviewed in
Gunnar & Donzella 2002). In secure attach-
ment relationships (Nachmias et al. 1996) and
with responsive surrogate caregivers (Gunnar
et al. 1992), infants exhibit crying directed at
soliciting care but do not exhibit elevations in
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Sensitive and
responsive care:
qualities of parenting
characterized by
timely and adequate
responsiveness to the
child’s needs

Temperament:
individual differences
in reactivity and
self-regulation
assumed to have a
constitutional basis.
Develops and is
influenced over time
by heredity,
maturation, and
experience

cortisol. Conversely, in insecure relationships
or with unsupportive caregivers, stressors
continue to be capable of producing eleva-
tions in cortisol and distress, and heart rate
increases tend to more closely approximate
activations of the HPA system (Spangler &
Schieche 1998). This generalization tends to
hold for acutely stressful experiences, but may
not be accurate for more prolonged periods
of stress such as those experienced when tod-
dlers enter full-time child care. Here it has
been noted that the security of the child’s at-
tachment relationship does not determine the
magnitude of the cortisol increase as the child
adjusts to repeated daily separations, and over
time it is the securely attached children whose
behavioral distress corresponds to their in-
creases in cortisol during these prolonged pe-
riods of separation (Ahnert et al. 2004).

Changes in other stress-sensitive systems
are also observed over the early months of
life. Notably, corresponding to the diminu-
tion of HPA responses to stressors, there is
an increase in vagal tone (parasympathetic in-
put to the heart) that may allow more nu-
anced cardiac and behavioral responses to psy-
chosocial threat (Porges 1992, Porges et al.
1994). Whether changes in vagal tone are
related to the emergence of secure-base at-
tachment relationships has not been clearly
demonstrated (although see Izard et al. 1991).
However, there is evidence that emotion-
related patterns of brain electrical activity
measured over the frontal cortex are related
to the infant’s history of sensitive and re-
sponsive care. Specifically, infants of mothers
who are highly sensitive and responsive ex-
hibit greater left frontal brain electrical (elec-
troencephalogram, or EEG) activity patterns
associated with positive emotionality and ap-
proach, whereas those with low-responsive
mothers exhibit greater right frontal EEG
patterns associated with negative emotional-
ity and fearful, inhibited temperament (Hane
& Fox 2006). In nonhuman primates, greater
left frontal EEG asymmetry has been shown
to correlate with lower cortisol reactivity to
stressors (Kalin et al. 1998). Higher vagal

tone, lower cortisol reactivity to stressors, and
greater left frontal EEG patterns suggest that,
at least under conditions of supportive care,
the human child enters a period of relative
stress hyporesponsivity by the latter part of
the first year that may buffer or protect the
developing brain and result in a more stress-
resilient child.

Later Childhood and Adolescence

There is increasing evidence that the period
of relative stress hyporesponsivity or buffer-
ing does not end with infancy but extends
over most of the childhood years. As is the
case with toddlers, it is difficult to find labo-
ratory situations that provoke large increases
in cortisol throughout childhood (reviewed
in Gunnar & Fisher 2006). Although many
children may be largely buffered from stress
during infancy and childhood, there is also
increasing evidence that this period of rela-
tive stress buffering draws to a close as chil-
dren transition into adolescence. In addition
to the psychosocial changes associated with
the adolescent transition, biological processes
associated with puberty may shift the child’s
stress neurobiology to adult-responsive pat-
terns (Spear 2000). It is now clear that the
increasing level of basal cortisol shown in
children between the ages of 6 and 17 years
is remarkably similar to that of the rodent,
which exhibits increases in basal GC levels
at the close of the stress-hyporesponsive pe-
riod (Kiess et al. 1995, Legro et al. 2003,
Netherton et al. 2004, Shirtcliff 2003). Some
studies suggest that the increases in basal GCs
peak between 10 and 14 years or at around
Tanner stage three (Elmlinger et al. 2002,
Netherton et al. 2004), whereas others show
a more gradual increase with age (Jonetz-
Mentzel & Wiedenmann 1993). In addition
to increases in basal cortisol levels, there also
is increasing evidence that cortisol responses
to laboratory stressors may increase with age
and pubertal status over the adolescent transi-
tion (Klimes-Dougan et al. 2001, Walker et al.
2001, Wewerka et al. 2005). Not all studies
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have demonstrated such increases in stress re-
sponsivity over the transition into adolescence
(for review, see Gunnar & Vazquez 2006), but
the weight of the evidence is beginning to sug-
gest that an adolescent emergence out of a
period of relative stress hyporesponsivity or
buffering is real and may have implications
for the heightened risk of psychopathology
noted among adolescent-aged children (Spear
2000).

SOCIAL REGULATION OF
STRESS NEUROBIOLOGY IN
HUMANS

The Role of Caregivers

Children’s development takes place within
the close social relationships with adult care-
givers. One of the functions of the caregiv-
ing system is to modulate and enable con-
trol of physiological and behavioral responses
to stressors. In humans, social modulation
of physiological stress responses may lay the
foundation for the development of emo-
tion regulation competencies (Stansbury &
Gunnar 1994). Patterns of social relatedness
in infancy can be characterized, in part, by the
security of the infant-caregiver attachment re-
lationship (Ainsworth et al. 1978), and phys-
iological stress responses have been found to
be mediated by attachment security (Gunnar
et al. 1996, Spangler & Schieche 1998, Sroufe
& Waters 1979). In the presence of the at-
tachment figure, toddlers who are in secure
attachment relationships do not show eleva-
tions in cortisol to distress-eliciting events,
whereas toddlers in insecure attachment rela-
tionships do (reviewed in Gunnar & Donzella
2002). The power of secure attachment re-
lationships to buffer or prevent elevations in
cortisol to otherwise mildly stressful events
has been demonstrated in both laboratory and
naturalistic situations. In comparison to orga-
nized but insecure attachment relationships,
disorganized/disordered attachment may sig-
nal even greater stress vulnerability. Disorga-
nized attachment relationships are believed to

arise, in part, from the infant’s experience of
frightening behavior and episodes of dissocia-
tion in the caregiver (Lyons-Ruth et al. 1995).
Children in disorganized/disoriented attach-
ment relationships are characterized by their
inability to organize or regulate affect and be-
havior toward their caregiver in stressful sit-
uations (van Ijzendoorn et al. 1999). These
children are also most likely to exhibit dis-
turbances in HPA axis activity (Hertsgaard
et al. 1995, Spangler & Grossmann 1997)
and are most at risk for behavioral and
emotional problems (van Ijzendoorn et al.
1999).

There is also evidence that family dynam-
ics, beyond attachment security/insecurity, in-
fluence cortisol reactivity in developing chil-
dren. Naturalistic observations from house-
holds of typically developing children (ages
2 month to 17 years) yield evidence that
traumatic family events (conflict, punishment,
shaming, serious quarrelling, and fighting)
are strongly associated with periods of ele-
vated cortisol levels when the child’s response
to acutely traumatic events is compared with
their own levels on less traumatic days in the
family (Flinn & England 1995). There is also
evidence that early disruptions in the parent-
child relationship may produce increased lev-
els of cortisol by the preschool years and
that these heightened levels predict increased
behavioral and emotional problems in the
school-aged child (Essex et al. 2002). Like-
wise, social adversity that results in high ma-
ternal expression of depressive symptoms, in-
cluding disrupted patterns of parenting, has
been shown to be related to higher and less-
regulated cortisol activity in school-aged chil-
dren and adolescents (Halligan et al. 2004,
Lupien et al. 2000). Additionally, in clinical
populations of children with behavior prob-
lems, cortisol increases during a parent-child
conflict-discussion task have been found to be
associated with dysfunctional parenting atti-
tudes and symptoms of anxiety and depression
in the child (Granger et al. 1996). In sum-
mary, adult caregivers and family influences
are powerful regulators of the HPA system.
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Caregivers can prevent elevations in cortisol
for infants and children even during threat-
ening external events. Responsive caregiving
allows children to elicit help by expressing
negative emotions, without triggering the en-
docrine component of the stress response.
Conversely, when the parenting is inadequate
and/or is the source of threat, relationships
can be a major source of physiological stress
for children (Repetti et al. 2002).

Peers and Early Socialization
Experiences

As children mature, their social circle expands
to include other children and adults, partic-
ularly in the context of school and daycare
centers. This entails the entrance into a com-
plex and challenging environment that de-
mands the emergence of social skills including
control of inappropriate behaviors, adapting
communication to the listener point of view,
interpreting emotional cues, and maintain-
ing play themes over transitions (Rubin et al.
1998). The social challenges posited by peer
groups may explain reported cortisol increases
over the day in full-day child-care settings
(Dettling et al. 1999, 2000; Tout et al. 1998;
Watamura et al. 2002a, 2002b, 2003). In
such child-care settings, the majority of 2- to
4-year-old children showed increases in cor-
tisol production over the day, whereas this is
not observed for the same children at home
on days they do not go to child care. As a
group, children 5 to 8 years of age do not
show increases in cortisol in group-care set-
tings, although individually some children do.
It has been suggested that increases in cor-
tisol at child care emerges at the age when
peer relations become salient. The challenge
of managing interactions with others for chil-
dren whose social skills are just emerging
may tax the young child’s coping abilities and,
combined with long hours of care, may tax
the child’s capacity to maintain basal cortisol
levels (also reviewed in Gunnar & Donzella
2002). This hypothesis is strengthened by ev-

idence that children with the largest increases
in cortisol over the child-care day have been
rated by multiple adult observers as less so-
cially competent and less capable of regulat-
ing negative emotions and aggression (Det-
tling et al. 1999, 2000). However, consistent
with the argument that support from adults is
critical to psychosocial regulation of stress in
early childhood, elevations in cortisol in child-
care settings are not observed when the child
receives individualized, supportive care from
care providers (Dettling et al. 2000).

Aside from normative developmental
trends and variations associated with social
competence, cortisol levels measured when
children are in peer group settings also re-
flect peer acceptance or rejection (Gunnar
et al. 1997, 2003). As early as the preschool
years, peer-rejected children produce higher
levels of cortisol in the preschool classroom
in comparison to average or popular chil-
dren. Peer rejection is associated with poor so-
cial skills and poor emotion regulation (Coie
et al. 1990). This is often expressed as poorly
contained aggression and inability to regulate
negative emotions, all of which is associated
with poorer peer relations and higher corti-
sol levels (Gunnar et al. 2003). Interestingly,
in studies of preschool-aged children, there is
little evidence that children who few others
nominate as either liked or disliked (i.e., peer-
neglected children) exhibit elevated levels of
cortisol (Gunnar et al. 2003). By contrast, at
least by early as adolescence, children who
are socially neglected and who consequently
spend hours alone even when they are with
peers (i.e., at school) do exhibit higher lev-
els of cortisol production (Adam 2006). The
psychosocial pathways through which peer-
rejected and peer-neglected children experi-
ence stress related to their social status are
not yet understood, although it seems likely
that social threats, disappointments, and other
aversive interactions are likely involved. In ad-
dition, pathways from poor family relation-
ships to poor peer and friendship relations
need to be considered.
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STRESS NEUROBIOLOGY AND
ADVERSE EXPERIENCE:
PARENTAL NEGLECT AND
ABUSE

Maltreatment during development has been
repeatedly linked to maladaptive outcomes
(Cicchetti 1996). Adult survivors of childhood
maltreatment reveal greater prevalence of
psychiatric disorders, including affective dis-
orders, eating disorders, somatic complaints,
sexual dysfunction, and substance abuse. Al-
terations in stress-sensitive neurobiological
systems, including regulation of GCs and
CRH, have been posited as mechanisms
through which adverse experience increases
the likelihood of psychopathology (see re-
views by Bremner & Vermetten 2001, De
Bellis 2001, Heim & Nemeroff 2001, Teicher
et al. 2002).

The Stress Neurobiology of Adult
Survivors

Researchers studying the impact of maltreat-
ment during childhood are dealing with a
still-developing neural system in which de-
velopmental change and effects of maltreat-
ment can be difficult to disentangle (Cicchetti
& Tucker 1994). It is helpful, therefore,
to consider first what is known about the
stress neurobiology of adult survivors of child-
hood maltreatment. Much of the adult sur-
vivor research has focused on adults with de-
pression and/or posttraumatic stress disorder
(PTSD) pursuant to their maltreatment his-
tories (Glaser 2000, Heim & Nemeroff 2001,
Heim et al. 2004). Many of these studies lack
appropriate controls. For example, adult sur-
vivors of childhood maltreatment who have
PTSD may be compared to healthy controls
so that differences associated with PTSD and
impacts of childhood abuse cannot be disen-
tangled. Nonetheless, the general pattern of
findings suggest that severe, early maltreat-
ment may have neurobiological consequences
that last into adulthood and that increase the
risk of psychopathology. To understand the

findings, it is important to briefly describe
alterations in stress neurobiology noted for
adults with these disorders who do not have
childhood maltreatment histories.

PTSD and depression appear to share hy-
peractivity of CRH at hypothalamic and ex-
trahypothalamic levels (Bremner et al. 1997,
Heim et al. 2004). Chronic CRH drive on
the pituitary in both disorders appears to re-
sult in counter-regulatory down-regulation at
the level of the pituitary, leading to blunted
ACTH in response to pharmacological CRH
challenge tests (Heim et al. 2004). However,
these disorders differ in the sensitivity of feed-
back regulation of the HPA axis. Depression
among adults is often associated with reduced
negative feedback regulation (e.g., Young et al.
1991), whereas PTSD appears to be associated
with increased negative feedback (e.g., Yehuda
2000). As a result, adults with depression often
hypersecrete cortisol and exhibit prolonged
cortisol elevations, whereas adults with PTSD
often hyposecrete cortisol and rapidly return
to baseline concentrations following pertur-
bation. The question is whether childhood
maltreatment alters these patterns.

Studies using pharmacological challenge
tests provide evidence that pituitary down-
regulation of ACTH is comparable in adults
with depression and PTSD regardless of their
childhood maltreatment histories (for a re-
view, see Heim et al. 2004). At the level of
the adrenal and with regard to negative feed-
back regulation, the picture is more complex.
There is some suggestion that depression plus
early childhood maltreatment may be associ-
ated with an exaggerated negative feedback
in comparison with what is observed in de-
pression without childhood abuse (Newport
et al. 2004). However, this may reflect unmea-
sured PTSD in the adult maltreatment sur-
vivors (Rinne et al. 2002). The picture changes
when psychological stressor tests are used.
Here hyper-responsiveness of ACTH and in
some instances cortisol has been noted, par-
ticularly among adult survivors with depres-
sion compared with depressed adults with-
out childhood abuse histories (Heim et al.
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2000, 2002). Unlike pharmacological chal-
lenges, psychological stressors depend on re-
cruitment of cortico-limbic activation path-
ways. Thus, hyperactivation for psychological
as opposed to pharmacological challenge sug-
gests that adult survivors of maltreatment who
have PTSD and/or depression may have even
more hyper-responsive threat/stress systems
at the cortico-limbic level than do nonmal-
treated adults with these disorders.

Critically, however, a very different pic-
ture emerges when one studies adult sur-
vivors of childhood maltreatment who are
free from psychopathology (Gunnar & Fisher
2006). By definition, such individuals are re-
silient. Given their resilience, perhaps it is not
surprising to find that across various stud-
ies these adults show evidence of reduced
activity of stress neurobiology. For exam-
ple, the CRH challenge test, which produces
blunted ACTH responses in individuals with
PTSD and/or depression, produces larger-
than-average responses in resilient adult sur-
vivors of childhood maltreatment (Heim et al.
2001). Because the magnitude of the ACTH
response is inversely proportional to the pitu-
itary’s chronic or trait-like exposure to CRH
(Newport et al. 2003), these results suggest
chronic low CRH production in resilient adult
survivors. Similar ACTH results have been
obtained in response to psychosocial stres-
sors combined with normal to low cortisol
and cardiac responses among resilient adult
survivors (Girdler et al. 2003). Finally, the
adrenals of resilient adult survivors also show
lower-than-expected production of cortisol to
ACTH challenge tests (Heim et al. 2001).
What is not clear is whether this pattern of
low stress responding is a risk factor for sub-
sequent physical and mental disorders or is
a reflection of individual differences in stress
reactivity that may have protected the devel-
oping brain from adverse impacts of maltreat-
ment. Both possibilities exist, and the latter
should alert developmental researchers to the
importance of considering individual differ-
ences and their genetic substrate in pursuing
questions about the impact of childhood ex-

periences on stress and emotion reactivity and
regulation.

Child Maltreatment and Stress
Neurobiology

It has been hypothesized that traumatized
children initially exhibit complex environ-
mentally induced developmental disorders
that later branch toward more specific and
adult-like pathologies such as depression and
anxiety (Cicchetti 1996). This complexity is
evidenced in the data on the stress physiology
of abused children, which are often challeng-
ing to interpret. For example, sexually abused
girls evidence blunted ACTH response in re-
action to CRH injections, similar to adult sur-
vivors of childhood abuse with depression or
PTSD (De Bellis et al. 1994). However, en-
hanced ACTH responses and normal corti-
sol levels to CRH challenges have also been
reported for depressed, abused children if
they are still experiencing adverse home lives
(Kaufman et al. 1997). As it does in adults,
concurrent psychopathology contributes to
the heterogeneous presentation of stress func-
tioning in maltreated children. For example,
in one study, maltreated externalizing boys at
a summer camp had higher cortisol levels rel-
ative to nonmaltreated boys with externaliz-
ing problems; however, they did not have ele-
vated cortisol levels relative to nondisordered
nonmaltreated boys (Cicchetti & Rogosch
2001b). Indeed, hyporesponsiveness of both
the SAM and HPA systems has been related
to externalizing symptomatology (McBurnett
& Lahey 1994, McBurnett et al. 2000, van
Goozen et al. 2000). In a study of maltreated
preschool-aged children compared with SES
controls, maltreated children exhibited less
cortisol reactivity and produced even lower
cortisol levels on days when there were high
levels of conflict and aggression in their class-
rooms (Hart et al. 1995). Furthermore, al-
though adults with PTSD and adult survivors
of child maltreatment may exhibit low lev-
els of basal cortisol activity, in several stud-
ies, children with PTSD pursuant to severe
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childhood maltreatment exhibited elevated
cortisol levels relative to controls (Carrion
et al. 2002, De Bellis et al. 1999) and higher
urinary excretion of Epi relative to nonmal-
treated clinically anxious and nonanxious chil-
dren (De Bellis et al. 1999). Researchers have
argued that the adult PTSD-cortisol pattern
may emerge with development and/or time
since the trauma exposure (e.g., De Bellis
2001). In addition to the HPA and SAM sys-
tems, there is also evidence that cortico-limbic
structures involved in emotions and stress
are affected by early childhood maltreatment.
Prepubertal children with PTSD secondary to
maltreatment evidence smaller cerebral vol-
umes, smaller corpus callosa relative to brain
volume, and less asymmetry of the prefrontal
cortex than do matched controls (reviewed in
De Bellis 2001).

Not only physical and sexual maltreatment
have an impact on the developing neurobi-
ology of stress. There is increasing evidence
that severe neglect also alters the stress neur-
axis (De Bellis 2005). Children living in or-
phanages serve as an example. Cortisol lev-
els in orphanage-reared infants and toddlers
tend to be low in the early morning and lack
the normal diurnal rhythm (Carlson & Earls
1997 and Kroupina et al. 1997, as reviewed in
Gunnar 2000). Similar low early-morning lev-
els have also been noted for domestically ne-
glected children soon after placement in fos-
ter care (Dozier et al. 2006, Gunnar & Fisher
2006). There is increasing evidence that se-
vere early neglect affects the development
of cortico-limbic circuits involved in emo-
tion and stress responding (Glaser 2000). For
example, postinstitutionalized children have
been found to have larger amygdala volumes,
and amygdala size and function (fMRI find-
ings) correspond to duration of institutional
care (Tottenham et al. 2006). It is not clear
whether neglect and abuse have different ef-
fects on the neurobiological systems that reg-
ulate stress and emotional function or whether
these effects are comparable. One challenge in
answering this question is that many abused
children also suffer from neglect (Cicchetti &

Toth 1995). Indeed, there is some evidence
that neglect and various types of abuse, along
with exposure to violence, have cumulative
effects; the most profound effects on stress
reactivity and regulation are noted for chil-
dren with the largest cumulative exposures
(Cicchetti & Rogosch 2001a).

INDIVIDUAL DIFFERENCES:
CONTRIBUTIONS FROM
TEMPERAMENT AND
GENETICS

As discussed above, adverse early experiences
produce different patterns of stress respond-
ing in different individuals; hyperreactivity in
some and seemingly hyporeactivity in oth-
ers. Although the nature and timing of ad-
verse or maltreating experience may partly
explain these differences, it is likely that to
some extent they also reflect individual differ-
ences that have a genetic contribution. Stud-
ies of both temperament as a reflection of
genetic dispositions and, more recently, can-
didate genes have begun to flesh out this hy-
pothesis. Most of the temperament work has
focused on behavioral dispositions, particu-
larly extreme shyness or behavioral inhibition,
that may increase the risk of anxiety and de-
pressive disorders (Kagan et al. 1987). Kagan
has argued that the extreme 5% to 10% of
behaviorally inhibited children are at risk for
developing anxiety disorders, and recent stud-
ies have demonstrated that as adults, these
individuals do show evidence of exaggerated
amygdala responses to social stimuli (i.e., un-
familiar faces; Schwartz et al. 2003). In com-
parison with extremely noninhibited children,
these extremely inhibited children also ex-
hibit heightened vigilance, higher heart rates,
lower heart-rate variability or vagal tone, and
greater right-frontal EEG activity (Fox et al.
2001, Kagan et al. 1988).

Several researchers have suggested that the
transition from extreme temperamental shy-
ness or inhibition to pathological anxiety may
involve hyperactivity of the HPA axis and its
capacity to increase amygdalar CRH activity,
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thus orchestrating larger fear and stress reac-
tions with less provocation (Rosen & Schulkin
1998). This would seem to require evidence
of greater HPA reactivity to stressors among
temperamentally inhibited children, some-
thing that has not been reliably found. Re-
searchers have reported higher early-morning
basal cortisol levels among more extremely in-
hibited children (Kagan et al. 1987, Schmidt
et al. 1997). But few studies have found higher
cortisol increases to psychological stressors
such as entering a new play group, starting a
new school year, or being exposed to labora-
tory stressors (for review, see Gunnar 2001).
One problem may be that researchers have
been searching for main effects of inhibited
temperament, while temperament may more
often moderate effects of stressors or oper-
ate in relation to the social support available
to the child. Thus, as noted above, children
with more negative emotional temperaments
are at risk for larger increases in cortisol when
they are in child-care settings, but this is only
observed when the care provider is low in sup-
portive and responsive care (Dettling et al.
2000).

The need to consider temperament in re-
lation to the supportiveness of the care chil-
dren receive is mirrored by recent findings re-
garding genes that may increase the risk of
emotional disorders. Thus, a common regu-
latory variant (5-HTTLPR) in the serotonin
transporter gene (SLC6A4) has received at-
tention because it may increase the risk for
anxiety and depression (Lesch 2001). How-
ever, several studies have now shown that
individuals carrying alleles that result in al-
tered transcription and transporter availabil-
ity are not at increased risk for depression
unless they have experienced more stressful
life events, including childhood maltreatment
(Caspi et al. 2003, Kaufman et al. 2004). Sim-
ilarly, among temperamentally inhibited chil-
dren there is now evidence that this gene vari-
ant is not associated with increasing levels of
behavioral inhibition with development un-
less the child also experiences less social sup-
port and supportive care during early child-

hood (Fox et al. 2005). These findings are of
note because there is evidence that a function-
ally equivalent gene variant in rhesus mon-
keys is associated with larger HPA responses
to stressors, but only among animals that grow
up in less-supportive care conditions (Barr
et al. 2004). This is not the only genetic varia-
tion that likely makes important contributions
to individual differences in stress reactivity
and regulation; however, as with the work on
shy, inhibited temperament and on the sero-
tonin transporter allele, it is very possible that
their consequences need to be considered in
the context of the supportiveness of the child’s
social relationships.

CONCLUSIONS AND FUTURE
DIRECTIONS

In the past 20 years, a tremendous amount has
been learned about the development of stress
reactivity and regulation during human devel-
opment. Stress reactivity is better understood
as the result of intertwined biological and psy-
chological processes that ultimately ensure
an organism’s survival. Adjusting to external
challenges through adaptive internal changes
is a universal mechanism through which live
organisms interface with their environment.
However there is a cost to frequent physio-
logical adjustments (allostatic load). Frequent
activation of neurobiological stress responses
increases the risk of physical and mental disor-
ders, perhaps particularly while organisms are
developing. As such, one of the most interest-
ing findings emerging from the research on
the psychobiology of stress is that in the ab-
sence of supportive care, stressors experienced
during sensitive periods of development can
in fact leave permanent imprints in the neu-
ral substrate of emotional and cognitive pro-
cesses. Stress that is chronic, severe, and deliv-
ered during vulnerable periods of neural de-
velopment will ripple through all levels of an
organism’s vital activity—be it a rat’s inability
to find its way through a maze or a maltreated
child’s hypersensitive response to angry faces.
It would not be an overstatement to say that
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the nervous system of mammals carries their
singular epigenetic history and expresses it in
unique but lawful (i.e. predictable) ways. This
is manifested both in the way organisms re-
act to environmental challenges and in the
way their neural structures are organized. The
negative effects of stress, however, are not al-
ways irreversible. The psychobiology of stress
reflects both epigenesis and current life cir-
cumstances. Improved living conditions and
enriched environments have the potential of
correcting the impact of early adverse stres-
sors. For example, exposing juvenile rats to
complex environments can reverse the neuro-
biological effects of rearing by a low-licking
and -grooming mother. Similarly, maltreated
preschool children placed in an early inter-
vention foster care program (which promoted
positive parenting strategies) showed both
improved behavioral adjustment and more
normative regulation of the HPA axis in com-
parison with children in typical foster care set-
tings (Fisher et al. 2000). Intervention at other
levels of the organism’s functioning may also
correct the long-term effects of early stressors.
Antidepressants and CRH antagonists, for ex-
ample, eliminate many of the behavioral dis-
turbances that animals suffer due to early ad-
verse experience; other pharmacologic agents
also may be found to improve stress resilience
among at-risk children.

A common theme in stress research is
that, consistent with other mammals, dur-
ing human development social relationships
play critical roles in regulating physiological
stress reactions and protecting the develop-
ing brain from potentially deleterious effects
of the hormones and neurochemicals asso-
ciated with stress reactions. Disturbances in
supportive care and care environments that
are themselves threatening appear to rob chil-
dren of an effective stress buffer and expose
them to the consequences of biological stress
responses that can have deleterious effects for
later development. Caregivers and close rel-
atives in a child’s life are both potentially the
strongest sources of stress and the most pow-

erful defense against harmful stressors. Com-
plex patterns of social stimulation may be
part of the critical experiential input that (in
interaction with genetic predispositions)
shapes children’s emotional and biological re-
activity. Children’s stress responses are also
sensitive to social experiences beyond the con-
text of the family. Negotiating peer interac-
tions in school settings is a potent challenge
to the stress system, particularly at the stage in
development when social skills are just emerg-
ing. Above and beyond these normative chal-
lenges, children who are less socially compe-
tent and/or rejected might be at risk for more
frequent and prolonged activation of the stress
response. One of the areas that need integra-
tion into models of developmental health and
psychopathology is how stress activation that
is related to social status may affect children’s
later adaptation and health.

Despite tremendous advances in our un-
derstanding of stress neurobiology and de-
velopment, there is still a great deal that is
not understood. Principle among our lacu-
nae is an adequate understanding of the ge-
netic variations among children that moder-
ate the reactivity, regulation, and impact of
stress responses. However, numerous candi-
date genes are being identified whose im-
pacts are now available for study. Integrating
genetic studies into work on temperament,
social experiences, stress responses, and be-
havioral outcomes will likely be an increas-
ing focus of future research. Likewise, the
emerging field of developmental affective
neuroscience has a great deal to offer re-
searchers concerned with understanding how
the activity of stress-sensitive systems affects
the development of brain systems involved
in learning, memory, and emotion (Pollak
2005). Together, these foci of future research
on stress should provide developmental re-
searchers with a richer understanding of both
normal and pathological development along
with increased targets for interventions that
will improve outcomes for children at risk for
behavioral and emotional problems.
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SUMMARY POINTS

1. Stressors trigger the activation of physiological systems designed to ensure the survival
of the organism to the temporal detriment of systems controlling growth, reproduc-
tion, and replenishment. Although these adaptations through internal changes are
desirable, under conditions of chronic stress they are deleterious. Chronic stress can
cause inhibition of neurogenesis, disruption of neuronal plasticity, and neurotoxicity.
Frequent activation of the stress response tilts the organism toward consuming re-
sources without sufficient recovery and increases the risk for physical and behavioral
problems. This has been termed “allostatic load.”

2. Glucocorticoids regulate gene expression in multiple brain structures, thus simul-
taneously affecting central regulation of organic processes. The physiological and
molecular events cascading from the activation of the stress systems have a powerful
impact on neural tissues and the functions they support at any stage of development.
However, these effects may be profound during periods of development, when the
brain is undergoing rapid change. Sensitive periods and stages of enhanced brain plas-
ticity are particularly vulnerable to the long-term effects of stress hormones. Chronic
elevations of stress hormones can affect synaptic connectivity and neurogenesis and
can increase cellular death, effectively altering the typical pathways and organization
of the young brain.

3. Stress neurobiology can be shaped by the social environment experienced by young
organisms, and adult patterns of stress reactivity can be permanently imprinted by
key social influences (whether positive or negative) early in development. Of the
various social influences that mammals experience, caregivers are by far the most
powerful source of stress and the most effective defenseagainst harmful stressors.
Disruption of the mother-infant relationship or failure of the caregiver to provide
adequate care contributes to individual differences in physiological and behavioral
responses to environmental challenges.

4. Maternal behavior can effectively change gene-controlled patterns of stress respon-
sivity. Genetic information linked to neuroendocrine reactivity can be programmed
by early maternal stimulation. In rodent models, highly responsive maternal behav-
ior actually promotes a stress neurobiology that is less reactive and more resilient
to challenges. The mechanisms are highly specific and involve relatively permanent
modification of DNA controlling the expression of glucocorticoid receptors. How-
ever, these effects can be temporarily reversed by pharmacological intervention and
in some cases by interventions that dramatically alter the care received by young
mammals. The fact that DNA structure can be environmentally programmed posits
both a mechanism for the impact of social stimulations and the molecular basis for
intervention and healing.

5. The neurobiology of stress changes with development. Normative changes in the
neurobiology of stress provide windows of opportunity and risks that are specific to
that developmental stage. Reorganization of the stress response is species specific
and seems to be tied to maturational changes in nervous system activity. For exam-
ple, it is likely that with the onset of puberty, the relative low-stress responsivity of
childhood ends and is marked by an increase in basal cortisol levels and heightened
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neurobiological responses to stressors. If the onset of puberty indeed is characterized
by enhanced stress reactivity, this would place adolescents at a heightened risk for
psychopathology and could partly explain why there is an increase in the incidence of
emotional disorders during adolescence.

6. Stress neurobiology is highly responsive to changes in the environment. Stress neu-
robiology, although very sensitive to early social contexts, is not a fixed or inflexible
system. It reflects both the organism’s epigenetic history and its new circumstances.
Improved living conditions, enriched environments, and corrective emotional expe-
riences can reverse the adverse consequences of early adversity.

7. Genes and environment interact in stress neurobiology. Constitutional predisposi-
tions intertwine with environmental influences to steer the developing stress neu-
robiology. Certain alleles of genes involved in neurotransmitter activity, neuronal
connectivity, and differentiations seem to place children and adults at risk for a wide
array of mental and physical disorders, especially when paired with adverse envi-
ronments and multiple stressors such as those experienced in neglectful and abusive
homes. Similarly, temperamentally inhibited children seem to be at risk for higher
stress reactivity and behavioral inhibition in the context of lack of supportive care
during childhood.
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