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At first glance, the monkey brain looks like a smaller version of

the human brain. Indeed, the anatomical and functional

architecture of the cortical auditory system in monkeys is very

similar to that of humans, with dual pathways segregated into a

ventral and a dorsal processing stream. Yet, monkeys do not

speak. Repeated attempts to pin this inability on one particular

cause have failed. A closer look at the necessary components

of language, according to Darwin, reveals that all of them got a

significant boost during evolution from nonhuman to human

primates. The vocal–articulatory system, in particular, has

developed into the most sophisticated of all human

sensorimotor systems with about a dozen effectors that, in

combination with each other, result in an auditory

communication system like no other. This sensorimotor

network possesses all the ingredients of an internal model

system that permits the emergence of sequence processing, as

required for phonology and syntax in modern languages.
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Introduction
In 1866, the Linguistic Society of Paris banned any

existing or future debates on the origin of language [1].

Thankfully, societies have changed since then, and we

are permitted once again to ask where language comes

from. With the advent of modern neurobiology, we can

even ask the question in a much more pointed fashion

than ever before and we do not dismiss it any longer as

unanswerable, although it is still raising controversy.

Based on the dual-stream model of auditory cortical

processing [[5�],3] (Figure 1), the present article will

focus (1) on auditory word forms and how they are
www.sciencedirect.com 
mapped to meaning; (2) it will discuss how words are

produced by combining and concatenating sequences of

sounds in the appropriate order; and (3) how perception

and production interact through an internal model system

to enable communication and language at a higher order.

The article does not attempt to cover the ultimate ques-

tion of how thoughts are put into words (‘Language is a

system of signs that expresses ideas’) [4] and how the

rules for combining words (‘syntax’) are implemented in

the brain. Although sequential analysis must be an essen-

tial mechanism for syntax as well [5�], actual precursor

systems in nonhuman primates are harder to identify [6�].
This may be the consequence of a more limited auditory

working memory span in monkeys [7], as sentence-level

processing requires longer time windows and integration

over greater distances.

Due to space constraints, the current piece clearly cannot

do enough justice to the role of the basal ganglia and the

cerebellum in the emergence of fine vocal motor control

and sequence learning in humans. Their importance for

the evolution of vocal learning and, thus, of language has

been discussed elsewhere [8,9].

Neuroanatomical and functional components
of auditory communication systems
Most people would agree that human language as a

complex cognitive system must have evolved from sim-

pler systems that have existed in a common ancestor of

present-day monkeys and humans. Although language as

such does not exist in nonhuman primates, neurobiologi-

cal precursor systems of language should, therefore, be

identifiable. As already Darwin [10] pointed out, language

consists of multiple discrete components (or subsystems)

that emerged one at a time and, together, form the human

language system. As a first step, it will be useful to

compare the neuroanatomical components of auditory

communication systems in monkeys and humans. Obvi-

ously, at a minimum, they have to consist of an auditory

recipient structure and a vocal production system, which

ideally should be tuned to each other, and a working

memory system that can hold the communication signal

in storage long enough to process sequences of sounds.

Auditory cortex: decoding of vocalizations and words

Functional organization of auditory regions in monkeys

After extensive preprocessing in the auditory periphery

and brainstem the auditory communication signal arrives

in the auditory cortex, where perception occurs. It was

first shown in the rhesus monkey that early auditory
Current Opinion in Behavioral Sciences 2018, 21:195–204
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Figure 1
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Dual-stream model of auditory processing. (a) Rhesus monkey [2,102–

104]; (b) Human [3]. Abbreviations — CS: central sulcus; AL, CL:

anterolateral, caudolateral belt; IPS: intraparietal sulcus; DLPFC,

VLPFC: dorsolateral, ventrolateral prefrontal cortex.
cortex consists of a primary-like region (the ‘core’) and

surrounding belt areas [11]. Although neurons in the core

respond best to pure tones of a certain frequency, belt

neurons prefer sounds of a greater bandwidth, such as

band-passed noise bursts and frequency-modulated

sweeps [12]. These sounds of intermediate complexity

form the constituent elements of virtually all communi-

cation sounds. A certain percentage of neurons in the

lateral belt of the rhesus monkey also respond to com-

plete species-specific vocalizations, especially in the

antero-lateral belt region (AL) [13] . Such neurons had

previously been reported in the squirrel monkey [14,15].

Another region in the anterior part of superior temporal

cortex of marmosets is tuned to the pitch of sounds and

has, therefore, been conjectured to serve as a ‘pitch

center’ [16]. Even more anterior to that location in the

STG, a region was identified that prefers species-specific

vocalizations over other vocalizations and sounds. This

region not only showed sensitivity to the ‘voice’ of the
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species, but also to the vocal identify of conspecific

individuals [17].

Auditory subregions in humans

A very similar organization as in monkeys is found in

human auditory cortex: A core region primarily responsive

to tones is surrounded by a belt region tuned to BPN

bursts [18], and an anterior parabelt region responds quite

selectively to vowels and vowel-like sounds [19], consis-

tent with earlier results [20]. The planum temporale near

Heschl’s gyrus serves the role of a computational hub,

distributing different types of features into the various

subregions [21]. Higher regions of human auditory cortex

along anterior superior temporal gyrus and sulcus (aSTG

and aSTS) encode increasingly complex sounds, with

specialized subregions responding best to musical instru-

ments (on the right) and to speech sounds (on the left)

[22,23�]. The parcellation of these multiple regions in

functional terms, that is, their tonotopic organization

[24�], follows closely a previously determined microana-

tomical parcellation in terms of cytoarchitectonics [25].

The voice region found in monkeys [17] (mentioned in

the previous section) was first identified in humans using

functional imaging [26]; responses include other non-

linguistic vocalizations, such as weeping, crying and

laughing. The existence of the pitch center found in

monkeys was also verified in humans [27]. Taken

together, this reveals an amazing similarity in the organi-

zation of higher, non-linguistic auditory cortex in mon-

keys and humans. Despite this recent imaging work and

complementary electrocorticographic (ECoG) studies

[28�], an accurate count of the number of auditory cortical

areas in either monkeys or humans is still lacking. It

cannot be excluded, therefore, that more areas have been

added in humans that have further facilitated the evolu-

tion of speech perception. Finer tuning of auditory corti-

cal neurons to critical speech sound features may also

have contributed to an optimization of the system. In a

more parsimonious view, however, monkey auditory cor-

tex contains all the necessary ingredients for the decoding

of speech sounds.

An ‘auditory word form area’ in the aSTG of humans? A

gateway to semantics

Organization in terms of auditory linguistic information in

humans also follows an antero-ventral trajectory: A meta-

analysis of a large number of auditory imaging studies

with PET and MRI found that phonemes are encoded

antero-laterally from Heschl’s gyrus [29�]. Word repre-

sentations are found anterior to that [29�,30,31]
(Figure 2a). The resulting ‘word patch’ has occasionally

been referred to as an auditory word form area [30]

(AWFA), by analogy to the visual word form area (VWFA)

for reading, which is found in ventral occipito-temporal

cortex [32].
www.sciencedirect.com
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Figure 2
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Converging evidence for the representation of vocalization sounds in the auditory ventral stream. (a) Humans, meta-analysis of auditory imaging

studies using (a) phonemes, (b) words, (c) short phrases [29�]; (b) Word representation in humans, identified by electrostimulation mapping of word

comprehension [36]; (c) Functional MRI results of activation by species-specific vocalizations in the rhesus monkey [51]. Abbreviations — MC:

monkey calls; ENV: environmental sounds; SMC: scrambled monkey calls; RTL: lateral rostrotemporal area.
The imaging data supporting an auditory word represen-

tation in the aSTG (see also [33,34] for earlier pioneering

studies) have found independent confirmation by results

of auditory single-unit and multi-unit responses to whole

words in a human patient [35] and by electrostimulation

mapping of word comprehension [36] (Figure 2b). The

results also chime with voxel-based lesion-symptom map-

ping of stroke patients with semantic aphasia [37,38], and

with theories based on studies of patients with primary

progressive (semantic) dementia [39]. Both semantic

patient groups show significant anterior superior temporal

involvement, which is located even more anterior than

the ‘word-form’ area [40]. Taken together, all of these

data point to a hierarchically organized, anterior-directed

system in the aSTG (extending laterally into the middle

temporal region in humans [41]), which links auditory

word representations with meaning [42,43,44��].

A seminal discovery more than three decades ago has

shown that vervet monkeys also have the ability to map
www.sciencedirect.com 
complex sounds to meaning [45]: Alarm calls referring to

different dangers result in differential behavior. The

same is true for the monkeys’ own calls, which carry

meaning about food types and social rank [46]. It will

be interesting to ultimately compare the loci and extent of

these auditory–semantic networks in both species.

The auditory ventral stream for auditory object

recognition and categorization

The functional–anatomical pathway for encoding audi-

tory object information, including short utterances, con-

tinues into ventrolateral prefrontal cortex (VLPFC) in

monkeys [47] and ventral inferior frontal cortex (IFC) in

humans [3], by way of the uncinate fasciculus and the

extreme capsule fiber system (EmC). Together with the

anterior part of the STG it has been referred to as the

auditory ventral stream (AVS) in both species [[44��],3].
In monkeys, an antero-ventral network of vocalization-

specific activation (without clear hemispheric asymmetry)

is apparent in functional MRI studies [48–51] (Figure 2c).
Current Opinion in Behavioral Sciences 2018, 21:195–204
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There is good reason to believe that back-projections

from frontal regions to aSTG in both species lead to

categorization of sounds as auditory objects [44��].

The auditory dorsal stream for sensorimotor control and

sequence analysis

Aswords are concatenatedinto longer sequences inhumans

and the rules of syntax have to be used to make sense out of

whole sentences, speech turns into language and a process

specific to humans comes into play. Most of this analysis is

accomplished by the auditory dorsal stream (ADS) and its

associated motor structures [52]. It is in this pathway where

some authors have sought to find fundamental differences

between monkeys and humans [53–55], but an auditory

dorsal pathway with direct connections from posterior STG

to prefrontal cortex clearly exists in both species [47,56]. It

has been argued that even mere quantitative changes can

lead to qualitative differences, as in nuclear physics or

semiconductor electronics, once they surpass a certain

threshold [57], but the search for the fundamental differ-

ence between monkeys and humans is still on, and con-

centrates now on the nature of the interaction between

ventral and dorsal pathways [57–59].

Production of communication sounds and
motor control of speech
Vocal communication in animals and humans, by defini-

tion, consists (a) of a vocal apparatus that is able to

produce sounds, and (b) an auditory recipient structure

in the brain that is able to decipher these sounds. The

biological mechanics of sound-producing elements vary

from species to species, thus limiting the possible sound

structure of species-specific calls. By necessity, higher

auditory structures in the brain of each species employing

an auditory communication system should contain neu-

rons that are able to respond to conspecific vocalizations

or their elements, in order to understand them. Spoken

language in humans uses acoustic signals that are pro-

duced by the vocal apparatus, consisting of the larynx and

a large number of supralaryngeal articulators [60�], most

notably the tongue. Besides these mechanical determi-

nants, speech production is obviously determined by the

neural control centers of the brain.

Motor control of vocal production: larynx and nucleus

ambiguus

Much has been said about the apparent changes during

evolution that may have occurred in the innervation of the

larynx [9,61,62�,63]. In particular, it has been claimed that

the neural control center of the larynx in the lower

brainstem, the nucleus ambiguus, receives a direct pro-

jection from primary motor cortex M1 in humans but not

in monkeys [61,63]. With recent advances in neuroana-

tomical tracing techniques [64] as well as diffusion tensor

imaging [65], this has proven inaccurate, however: it turns

out that at least one of the laryngeal muscles, the cri-

cothyroid, which participates in the control of vocal pitch,
Current Opinion in Behavioral Sciences 2018, 21:195–204 
receives direct input from several motor cortical regions in

the macaque, but its single most prominent cortical input

comes from M1 [106]. In addition, diffusion tractography

in both monkeys and humans shows that the laryngeal

motor cortex (LMC) network is largely comparable in

both species, albeit with more extensive LMC connec-

tions to somatosensory and parietal cortex in humans [65].

Thus, there again seems to be only a quantitative differ-

ence in LMC connections between monkeys and

humans.

Furthermore, the nucleus ambiguus is only one of several

brainstem nuclei controlling the >40 muscles of the vocal

apparatus, and its function is restricted to the control of

only 6 of them [62�]. As such, it does have some control

over pitch changes and over the length of the vocal tract,

as necessary for the production of different vowels [66]

(‘phonation’). Together with improved voluntary control

of respiration and coordinated breathing, this may have

led to a first simple system for volitional phonation in

monkeys [67,68] and, perhaps, to the evolution of singing

and yodeling in humans. Thus, speech and language may

have in fact evolved from song and music, as some

(including Darwin) have argued [69,70].

Supralaryngeal control of vocal production

Although the larynx is able to produce relatively simple

vocalizations with varying pitch and spectral content,

most of the information content of human speech is

generated by the supralaryngeal components of the vocal

tract, like tongue, lips, and lower jaw. These articulators

are under the control of three cranial nerves (hypoglossal,

facial and trigeminal) and their corresponding brainstem

nuclei (Figure 3a). Surprisingly little is known about the

cortical innervation of these nuclei in monkeys [71], but

detailed studies with transneuronal tracers are currently

under way (P Strick, personal communication). Initial

results demonstrate converging input from two locations

in primary motor cortex: from a ventral location in the

orofacial region and a more dorsal location representing

the diaphragm for breathing (Helou et al.: Soc Neurosci,
2017;406.03).

It was also found recently that posterior parietal cortex

(PPC) provides surprisingly prominent input to the hand

in rhesus monkeys, forming a higher-order ‘command

apparatus’ for fine motor control of complex hand move-

ments [72�], which might have enabled the evolution of

tool use in primates. A similar command center in the

PPC may have evolved for vocal control in humans but

not in monkeys.

The supralaryngeal components of the human vocal tract

enable the human vocal system to produce hundreds of

discernable phonemes across the languages of the world

and carry the bulk of the information content of human

speech. Whereas the larynx itself can only produce
www.sciencedirect.com
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Figure 3
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Articulators of the human vocal apparatus. (a) Only larynx and vocal cords (framed by blue box) are innervated from the nucleus ambiguus

(laryngeal nerve), whereas supralaryngeal articulators (framed by red boxes) are innervated from the hypoglossal (tongue), facial and trigeminal

nerves (lips, mandible). (b) Mid-sagittal MRI slice through the human brain and skull. Real-time MRI permits the observation of articulator

movements during song and speech [105].

Source: a: modified from MIT OpenCourseWare; b: from M Echternach, M Burdumi, L Traser, B Richter, Universitatsklinikum Freiburg, Germany

(https://www.youtube.com/watch?v=GCluRCd2YuM).
temporal modulations of the voice through glottal closure

and via pulsatile exhalation (cf. the barks, grunts and

screams of macaques), the human vocal tract can produce

subtle closures and constrictions of the airflow that each

carry their own acoustic–phonetic signatures depending on

place or manner of articulation (bilabial, dental, fricative,

and so on). Combining the various phonemes leads to the

combinatorial explosion that is language, and each lan-

guage uses only a small subset of possible combinations.

The tongue carries much of the load for the production

of these ‘information-bearing elements’ [73], and it is

for good reason that many languages use the same word

for ‘tongue’ and ‘language’ (lingua, langue). The supra-

laryngeal part of the vocal tract is the real reason for the

enormous diversity of the vocal repertoire in humans

and the multitude of speech sounds they can produce

by combining coordinated movements of the various

articulators [60�]. The tongue alone (innervated by the

n. hypoglossus) consists of eight individual muscles,

which allow to move its tip in three spatial dimensions
www.sciencedirect.com 
and change its width and length as well as curl, pro-

trude, and retract it (using the hyoid bone as a lever).

Tongue action is supplemented by coordinated move-

ments of the lips and the mandible, creating multiple

points of contact with the gums and different points of

closure of the airways responsible for the production of

various types of sounds with distinct vocal signatures,

including virtually all consonants. Consonants (in

accord with their rarer occurrence) provide most of

the information content in speech. In fact, a number

of languages, such as Hebrew and Arabic, use conso-

nantal alphabets (‘abjads’) to transcribe their spoken

words with individual signs for consonants, but not for

vowels.

Observation of speech movements in real time

Visualization of the intricate and speedy movements of

the supralaryngeal elements of the vocal apparatus during

singing and speaking has become possible through real-

time magnetic resonance imaging [74,75] (rtMRI;

Figure 3b; (https://www.facebook.com/quartznews/
Current Opinion in Behavioral Sciences 2018, 21:195–204
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videos/1176008672432833/). Watching these videos

should convince anyone that speech is very likely the

most sophisticated motor behavior in the human body,

rivaled only by the movements of the hand and fingers,

and undoubtedly many times more complex than in any

other animal species that produces communication

sounds. It appears highly unlikely, therefore, that mon-

keys, lacking most of the necessary articulators, could, in

principle, produce human speech with their own vocal

tracts, even if they had the neural wherewithal to do it

[76]. Simple observation of this miraculous machine in

action should be reason enough to at least consider the

evolution of human speech production as one of the key

events driving the evolution of speech and language.

Talking birds

Previous theories emphasizing the crucial importance of

speech production for the evolution of language [77] have

been dismissed by making the (perhaps facetious) argu-

ment that even parrots can learn to speak. The most

publicized of such cases, an African grey parrot named

Alex, was reported to have a vocabulary of 150 words,

close to that of a 2-year old human infant [78]. Other bird

species, such as mynahs and mockingbirds, which can also

learn to imitate human speech sounds, have been

reported to imitate artificial sounds, like car and machine

sounds as well, so the primary purpose of these abilities is

unlikely for communication.

Although parrots may be able to produce imitations of

human words and utterances, these observations tell us

more about human speech perception than about vocal

learning in animals: Most imitations are acoustically

highly degraded and can only be understood as speech

by humans because their own recipient structure (the

auditory cortex) is tuned to the expected targets and fills

in the rest [79] (just as we can understand sinusoidal

speech or speech sampled through a cochlear implant).

Imitation in human infants

How then does imitation work? How do we know what

muscles to contract and which articulators to activate, in

order to produce the speech sound we have in mind? The

sounds stored in auditory cortex during early exposure to

speech serve as targets to guide motor production. Audi-

tory feedback is obviously necessary to assure that the

produced copy at least approximates the original; the

resulting error is then minimized over many iterations.

In fact, it may take children several years to perfect their

pronunciation. This error minimization is a critical part of

the model [3,80]; it does not have to be conscious, but is

more likely an implicit learning process. Once an accept-

able transformation from perception to production is

established by learning, the result is fixed (with an

occasional refresher?) and becomes the ‘forward model’,

which can be accessed quickly without sensory feedback

(‘ballistically’, as it were).
Current Opinion in Behavioral Sciences 2018, 21:195–204 
Imitation also works for visual gestures and has given rise

to the mirror neuron theory, in which neurons in the

premotor cortex of monkeys are activated not only during

a certain sensory-guided motor act, like reaching or

grasping, but also when the monkey observes another

monkey performing the same action [81]. Thus, the

mirror system is able to predict the sensory consequences

of actions, and this is not restricted to the visual domain.

Motor theories of speech perception

The most prominent version of a motor theory of speech

perception was put forward by Liberman and colleagues

(1967). What started out as an ingenious explanation for

acoustic invariance in speech production by Liberman

and by others [82], turned into a radical theory claiming

“perception of phonetic structure without translation from
preliminary auditory impressions” [83]. In its final instanti-

ation [84], Liberman’s theory “ . . . takes the speech elements
to be articulatory gestures that are the primary objects of both
production and perception. Those gestures form a natural class
that serves a linguistic function and no other. Therefore, their
representations are immediately linguistic, requiring no cog-
nitive intervention to make them appropriate for use by the other
components of the language system” [84].

Does it follow then that we can understand only sounds

that we can produce? More generally, are doable sounds

represented differently in the brain? Is the ‘special’ aspect

of speech the fact that doable sounds depend on sensori-

motor (not just sensory) information? The control experi-

ment would be to test sounds that cannot be imitated

without extensive training, such as animal sounds [44��].

In the extreme, this would beg the question whether it is

actually necessary that the motor system is intact for some-

one to learn and understand speech? Although it is well

known that Broca’s area (as well as other motor-related

regions) is active during speech perception [85,86], studies

of Broca aphasics, who are unable to produce speech but can

understand it, seem to argue against it [87]. However, more

studiesare needed, as the outcome maydepend onthe exact

site of the lesion (BA44 or 45?) and on the level of speech

processing. Clearly, the motor system is of great importance

for the initial programming of internal models during lan-

guage acquisition (as is an intact sense of hearing) [88,89�].

Convergence of ventral and dorsal streams

According to the dual-stream model of Rauschecker and

Scott (2009) (Figures 1 and 4), the ventral and dorsal

streams converge in Broca’s area in the inferior frontal

cortex. The dorsal stream targets BA 44, while the ventral

stream ends in BA 45. It has been conjectured that Broca’s

region plays an important role in the transformation of

highly processed auditory-sensory information into

motor-articulatory signals andvice versa [80,90]. Thedorsal

stream in itself is organized as a system for sensorimotor

integration and control and is programmed by sensory input
www.sciencedirect.com
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Figure 4
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Brain structures involved in speech and language. Dual-stream model of Rauschecker and Scott [3] is superimposed on block diagram of speech

production (modified and expanded from [62�]). Auditory-perceptual structures (AVS) are shown in green, auditory-motor structures (ADS) in red.

Motor structures, including basal ganglia, cerebellum, and brainstem nuclei, are displayed at the bottom as open blocks. Feedback connections

are shown as dashed lines. Abbreviations — ADS: auditory dorsal stream; AVS: auditory ventral stream; BA: Brodmann area; SMA: supplementary

motor area; GP: globus pallidus; Ant.: anterior; Post.: posterior.
from the ventral stream. The inferior parietal cortex mea-

sures the error signal and functions to minimize it.

Internal models

This transformation of sensory into motor information is

typical for internal models and specifically forward mod-

els according to motor control theory [3,80,91–94].

According to Bornkessel-Schlesewsky et al. [52] the dorsal

stream contains multiple internal models on different

time scales: from articulation of single words to setting

up sentence structures. As such it also plays a crucial role

for sentence comprehension [58].

Working memory

This leads us to the final component which must have

been essential for the evolution of language: the ability
www.sciencedirect.com 
to hold fleeting auditory information in short-term

memory for as long as necessary. While this feature

is already important for multisyllabic words in modern

languages, it is even more essential for the speaking and

understanding of long grammatical sentences. In fact,

some authors have noted that monkeys have a signifi-

cantly shorter memory span for sounds than for visual

objects [7], and the anatomical substrate for auditory

working memory in the medial temporal lobe may be

reduced.

Conclusions and future studies
As we have seen, many of the structural components that

make up the human language system are in place in

nonhuman primates. Monkeys have a well-developed

auditory cortex, which gives rise to two largely segregated
Current Opinion in Behavioral Sciences 2018, 21:195–204
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pathways: an antero-ventral and a postero-dorsal stream,

which subserve different functions. The auditory ventral

stream (AVS) works as a hierarchical network for the decod-

ing of increasingly complex sounds. It is possible that the

level of sound complexity and the tuning selectivity of

auditory cortical neurons is higher in humans and the num-

ber of specialized regions within auditory cortex is higher

than in monkeys, but this awaits further analysis measuring

functional activity and connectivity in both species [95,96��].
The AVS then links sounds to meaning in networks of the

anterior superior temporal cortex and temporal pole and

engages top-down connections from prefrontal cortex for

categorization of auditory objects [44��].

The auditory dorsal stream (ADS) is a complex network

for sensorimotor integration and control, similar to its

visual counterpart, in that it specializes for the analysis

of space and motion, but also forms the basis for reaching

and grasping in the visual domain and for audiomotor

behavior, including speaking and singing in humans. As

such, it encompasses aspects of the rival ‘where’, ‘how’

and ‘when’ models of the original dorsal stream [97�].
Although it undoubtedly exists in nonhuman primates

[98] (and even in most other mammals), it seems as

though the ADS has undergone massive expansion and

refinement in humans that has enabled the control of a

highly refined vocal apparatus, which has ultimately led to

the production of speech.

For speech to evolve into language, a number of other

things must have happened: The convergence of AVS and

ADS in Broca’s area and the existence of longer memory

spans, involving feedback loops from auditory to premotor

regions, as well as feedback from somatosensory receptors

informing internal models of the speech and vocal appara-

tus [99]. The ability to integrate observable visual speech

articulations into auditory speech perception, most appar-

ent when it goes wrong as in the McGurk effect, also resides

in the dorsal stream [100,101]. More work on all these

components will be necessary to come to a more compre-

hensive understanding of language and its evolution. Stud-

ies of language acquisition will take an especially important

place. The picture that emerges is one of a slow/continuous

converging evolution driven, as Darwin [10] surmised, by

multiple factors, not by a single mutation that suddenly

sparked the existence of language.
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