Esercizi IAS-foglio 2

(Prof.ssa D. Bubboloni)

14 ottobre 2019

- 1. Sia G un gruppo. Provare che se $H \leq G$, la chiusura normale di H in G coincide con il minimo sottogruppo normale in G contenente H.
- 2. Dimostrare il seguente teorema: Sia G un gruppo e siano $H, K \leq G$. Si ha $G = H \times K$ se e solo sono verificate entrambe le seguenti condizioni:
 - a) ogni elemento g di G si scrive in modo unico g = hk con $h \in H$ e $k \in K$ (unicita' di scrittura);
 - b) $\forall h \in H, \forall k \in K, \ hk = kh$. (permutabilita' elemento a elemento fra H e K).
- **3.** Sia G un gruppo e $N \leq G$. Provare che N ammette un complemento se e solo se esiste un sistema S di rappresentanti dei laterali di N in G tale che $S \leq G$.
 - **4.** Sia G un gruppo finito. Provare che se $|G| \geq 3$, allora $|\operatorname{Aut}(G)| \geq 2$.
 - **5.** Determinare il massimo ordine di un elemento di S_{12} .

Suggerimento: Ricordare che $|\sigma|$ e' il minimo comune multiplo dei termini in T_{σ} .

6. Si ricordi che se G e' un gruppo, un sottogruppo M di G si dice massimale se $M \neq G$ e $M \leq H \leq G$ implica H = M o H = G.

Mostrare che un sottogruppo massimale non puo' avere esattamente due coniugati.

Suggerimento: si sfrutti il fatto che il numero dei coniugati di un sottogruppo K di G e' dato dall'indice del suo normalizzante.

- 7. Sia G un gruppo. Provare che se $H \leq G$, il core di H coincide con il prodotto di tutti i normali in G inclusi in H.
 - **9.** Provare che $a + n\mathbb{Z}$ e' invertibile nell'anello $\mathbb{Z}/n\mathbb{Z}$ se e solo se (a, n) = 1.
- 10. Determinare il minimo $n \in \mathbb{N}$ tale che $\operatorname{Aut}(C_n)$ non sia ciclico e individuarne la struttura. Trovarne un sistema di generatori.
 - 11. Determinare $|\operatorname{Aut}(C_6 \times C_7)|$ e dire se $\operatorname{Aut}(C_6 \times C_7)$ risulta ciclico.

- 12. Provare che in un gruppo finito G, il numero degli elementi di G di ordine n e' divisibile per $\varphi(n)$. Dedurne che il numero di elementi di ordine 3 in G e' pari, eventualmente 0.
 - 13. Provare che $C_4 \times \mathbb{Z}$ e' abeliano non ciclico.
 - 14. Determinare $N_{S_7}(\langle (1234567) \rangle)$ e $C_{S_7}(\langle (1234567) \rangle)$.