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Reinforcement learning models that focus on the striatum and dopamine can predict the choices of animals and people.

Representations of reward expectation and of reward prediction errors that are pertinent to decision making, however, are not

confined to these regions but are also found in prefrontal and cingulate cortex. Moreover, decisions are not guided solely by the

magnitude of the reward that is expected. Uncertainty in the estimate of the reward expectation, the value of information that might

be gained by taking a course of action and the cost of an action all influence the manner in which decisions are made through

prefrontal and cingulate cortex.

Reward-maximizing behavior has been assumed to rely predomi-
nantly on the ability to estimate the value of different stimuli in the
environment and of different actions an animal might take. Rein-
forcement learning models have begun to provide accounts of
reward-guided behavior and suggest that neural activity in the
striatum and the dopamine system represents the parameters
described by reinforcement learning models. Statistics, economics
and machine learning, however, suggest that decision making can be
substantially improved by considering a richer representation of the
reward environment. Here we review and contrast some of the
components of such a representation, their implications for
behavior and evidence supporting their dependence on prefrontal
and cingulate cortex.

Reinforcement-guided decision making

Reinforcement learning theory proposes strategies for choosing the best
course of action when the only guiding cues are previous experiences of
reinforcement. One critical insight deriving from these ideas is that
such behavior can be divided into two components. The first addresses
the problem of learning (or tracking) relationships among stimuli,
actions and reinforcements. The most studied strategy for under-
standing such relationships proposes that stimuli or actions induce
predictions or expectations of the amount or probability of reward that
might follow them. Such predictions are often called ‘reward expecta-
tions’. In the event of a discrepancy between a reward expectation
elicited by a stimulus or action and the subsequent outcome, the
reward expectation should be modified to ensure that it is more
accurate the next time the stimulus or action occurs1,2. The discrepancy
between the reward expectation and the outcome is represented
quantitatively as the ‘prediction error’ (d), and the extent to which
expectations are updated is taken to be the product of the prediction
error and the ‘learning rate’ (a). The new revised ‘expectation’ of

reward on the next learning trial, Vt + 1, is thus a function of the
expectation on the current trial, Vt, and the product of the prediction
error and learning rate:

Vt + 1 ¼ Vt + da ð1Þ

The learning rate represents the expected value of information available
on the current trial, and depends on the animal’s current level of
understanding of the environment. In situations where the animal is
uncertain (Fig. 1) about the environment, new information is more
valuable3–5. Hence, new outcomes have a large impact on future
expectations either because they are surprising (inducing a large
prediction error) or because of uncertainty about current expectations
(inducing a large learning rate).

The dopamine system has provided the richest source of data for
neuroscientists seeking experimental validation of such theoretical
ideas. Single-neuron recordings from dopamine neurons across differ-
ent species show several features of their activity that mimic theoretical
learning parameters. When an animal is presented with a conditioned
stimulus that predicts a later reward, phasic responses are induced in
dopamine neurons that encode the expectation at the time of the cue
and encode a quantitative prediction error when the outcome is
observed6,7. Such signals are encoded quantitatively, whether the
magnitude8,9 or the probability10 of the outcome is manipulated.
When magnitude and probability are manipulated together, dopamine
neurons respond to their combination, consistent with a representation
of the expected value or utility of the outcome8. The striatum is one of
the main projection regions of the midbrain dopaminergic nuclei, and
the activity of its neurons encodes the expected value of potential
actions and the difference in the expected values of potential actions11.
Several functional magnetic resonance imaging (fMRI) studies
similarly show activation in the vicinity of the midbrain dopa-
minergic nuclei and in the striatum that is correlated with reward
expectation12–14 and with prediction error15–17.

Even if action-outcome associations are well learned, reinforcement
learning theory considers a second subcomponent of behavior: how to
select actions based on current expectations2. One might assume that
this is easy: that the animal should simply use the action with the
highest expected value. Such a strategy maximizes the animal’s

DEC IS ION MAK ING REV I EW

Published online 26 March 2008; doi:10.1038/nn2066

Department of Experimental Psychology and Centre for Functional MRI of the
Brain, John Radcliffe Hospital, University of Oxford, South Parks Road, Oxford OX1
3UD, UK. Correspondence should be addressed to M.F.S.R.
(matthew.rushworth@psy.ox.ac.uk) or T.E.J.B. (behrens@fmrib.ox.lac.uk).

NATURE NEUROSCIENCE VOLUME 11 [ NUMBER 4 [ APRIL 2008 389

©
20

08
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e

http://www.nature.com/doifinder/10.1038/nn2066
mailto:matthew.rushworth@psy.ox.ac.uk
mailto:behrens@fmrib.ox.lac.uk
http://www.nature.com/natureneuroscience


expected utility in the short term but often forces the animal to make
only few actions repeatedly. By forgoing the opportunity to explore the
other available options, the animal risks missing a high-value action in
the future. Although there is no easy solution to this problem, it is clear
that exploratory behavior should be modulated by at least two
factors18,19: the expected immediate cost and return on that action
and the expected degree to which the information obtained from
making the action might influence future predictions. This second
factor is the value of the information available from each action, which
was also crucial for dictating the learning rate. In situations when
animals will learn more from each new outcome, they should be
prepared to forego more immediate rewards to obtain new information.

Prediction errors in the cingulate cortex

Reward expectation and prediction error signals may be especially
prominent aspects of dopamine neuron activity, but similar informa-
tion is found in prefrontal and anterior cingulate cortex (ACC), even if
it is not always discussed using terms derived from computational
theory. The clearest examples come from recordings in ACC, a
prominent target for dopamine projections20. Similarly to dopamine
neurons, ACC neurons encode a reward prediction that combines
information about reward magnitude and reward probability21,22.
Furthermore ACC neurons also encode a quantitative reward predic-
tion error at the time of the outcome23–25 (Fig. 2).

One might argue that the activity recorded from a small sample of
neurons does not represent the function of the area as a whole, but the
involvement of the ACC in the monitoring of errors and other
outcomes is confirmed both by lesion studies and by techniques such
as fMRI that reflect the activity of populations of neurons. Functional
MRI activity in the ACC increases when experimental subjects make
errors26–28, but it also increases when positive feedback is provided, if
the feedback indicates that the estimate of an action’s value should be
increased29. A negative-going event-related potential, the error- or
feedback-related negativity (ERN or FRN), which has a dipole source

in the ACC, can be recorded over the frontal midline scalp when errors
are made30. Like the ACC blood oxygenation level–dependent (BOLD)
signal, the ERN may reflect not just errors but also prediction errors31

that are used to guide subsequent action selection. The ERN increases
in response to positive feedback when negative feedback is expected32.
In a probabilistic gambling task, the ERN is larger on error trials if those
error trials are followed by a switch in action selection19. Such switches
are more likely to occur when the estimates of the actions’ values have
been revised downward to a greater extent.

There are, however, key differences in coding between ACC and
dopaminergic cells. In the dopamine system, the same cells encode a
positive and negative prediction error by a phasic increase in firing and
an absence of tonic firing, respectively6,33,34. By contrast, in the ACC,
different populations of cells encode positive and negative prediction
errors, and both types of error result in an increase in firing in their
respective populations25. Although the size of positive prediction errors
is encoded by linear increases in dopamine neuron firing rate, negative
prediction errors are all encoded by the same response—an absence of
activity33. This may reflect limitations in the dynamic range of
dopamine neurons.

Furthermore, reward expectation and prediction error–related activ-
ity in the ACC may be particularly closely tied to action selection.
Reward expectation and prediction error–related dopaminergic activity
are reported both during pavlovian learning35,36, in which the associa-
tion is only between cue and outcome, and in instrumental learning, in
which the outcome depends on an action33,34. However, ACC cells
encode the expected value of actions better than they encode the
expected value of stimuli25, and similarly they encode the prediction
error preferentially in instrumental situations when the learned infor-
mation will guide future actions25; the same neurons do not respond to
an unexpected visual stimulus. Although such studies suggest that the
ACC has a special role in encoding the value of actions, other
researchers disagree; some ACC neurons represent less information
about the direction of previous eye movement responses than do
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Figure 1 Probability, risk and uncertainty. Three related but very different concepts have come to the fore in recent descriptions of decisions and learning.

Here we refer to them as probability, risk and uncertainty. The probability of an outcome derives from the underlying stochasticity of the system the animal is

trying to predict. The animal cannot influence this probability, but can maximize its income by acquiring an accurate estimate of this probability and using this
estimate in the computation of the value of the action. The risk of an outcome is defined as the outcome variance (for example, ref. 90) and measures the

unpredictability of the outcome. Similarly, it derives from underlying stochasticity and cannot be influenced by the animal. Unlike probability, risk has its

maximum at a reward rate of 0.5, when the outcome is least predictable. In economic models, risk is often assumed to be a cost that should be weighed up

against expected value in making a decision. (a) (from ref. 90) Outcome probability (black) and risk (red) as a function of the true underlying reward rate.

Uncertainty is fundamentally unlike probability and risk in that it is not a measure of the stochasticity of the underlying system, but rather a measure of the

quality of the animal’s own estimate. The animal can resolve uncertainty in its estimate by acquiring more data; that is, by sampling the action on more

occasions. (b,c) Illustration. An animal is asked to estimate the reward rate of an action by repetitive sampling of the action, The true underlying reward rate is

0.6. In each figure, the gray shaded areas show probability density functions that represent the most the animal can know about the true reward rate after

witnessing different outcomes. By chance, after 10 trials (b), the animal has experienced only 4 rewards. The gray distribution therefore has a mean of 0.4 but

it also has a large variance; it is this variance that defined the animal’s uncertainty. It is still possible that the underlying reward rate is 0.6 or even 0.8 even

though the first 10 trials have resulted in only 4 rewards. After 50 trials (c), the animal has received 30 rewards. The mean of the distribution is now 0.6 but,

crucially, the variance is much reduced. The animal is much more confident in its estimate of the reward rate. Such uncertainty is important in both learning

and decision making. In learning, animals should give more weight to new data, and therefore learn faster, when they are uncertain in their current estimate. In

decision making, animals should be prepared to pay to acquire new information that will reduce this uncertainty, and therefore allow them to make more

accurate future predictions.
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neurons in lateral prefrontal cortex23. Nevertheless, the ACC region in
which most recordings are made is in a position to influence and be
influenced by action-selection processes: it is anatomically
interconnected with the adjacent rostral cingulate motor area
(CMAr), which has direct projections to the spinal cord and the
primary motor cortex37,38. CMAr neurons show activity that is time-
locked to the execution of movements39,40. Although CMAr neurons
encode comparatively little information about the spatial features of an
action, their firing rates do contain information about other aspects of
plans, such as the sequential order in which actions are made39,40. By
contrast, whereas dopamine neurons encode the expected value of the
action that will be taken, or in some cases the
expected value of the best action that could be
taken in a given context7, their activity does
not seem to contribute to the selection of the
action itself in a simple way34, and the pre-
sence of prediction error activity is not always

related to subsequent adjustments in action selection33. In reinforce-
ment learning models, such a situation could occur in the presence of a
low learning rate.

Parameters encoded in cingulate cortex

In addition to the reward expectation and the prediction error, the
learning rate and the statistical parameters of the environment that
determine the learning rate are also encoded in ACC activity when new
information is observed. When subjects are asked to adjust their
behavior in response to new outcomes while the statistics of the reward
environment change, subjects flexibly adapt their learning rates such
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Figure 2 Prediction error encoding in the ACC. Changes of activity in a population of medial frontal cortical neurons centered on the ACC sulcus during the

course of learning which action was rewarded with a secondary reinforcer. (a–c) Averaged responses of 16 positive feedback–preferring cells (a), 32 negative
feedback–preferring cells (b) and 34 nondifferential cells (c). Bin width in upper graphs in each section, 50 ms. The activity of each cell was normalized by its

peak activity and then averaged across cells. Each graph shows activity across three trials of a typical problem set. On the first trial, monkeys did not know

which was the correct action to choose. On half of trials (left column, C1) the monkeys guessed correctly and chose the action associated with a positive

secondary reinforcer. Usually the monkeys continued to choose correctly on the subsequent trials (C2 and C3) on these blocks. In the other half of blocks,

the monkeys’ first choices were incorrect (right column, E1). The monkeys usually corrected their choices on the subsequent three trials (eC1, eC2 and eC3).

Positive feedback–preferring neurons and nondifferential neurons were active in relation to the positive prediction error when the first choice was made

correctly but subsequently decreased their activity once the correct choice was known. Negative feedback–preferring neurons and nondifferential neurons were

active in relation to the negative prediction error when the first choice was made incorrectly but subsequently decreased their activity once the correct choice

was known. (Reprinted with permission from Matsumoto et al.25 (Nature Neuroscience)).
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Figure 3 ACC, volatility and the learning rate.

Learning rates are flexibly adapted to best suit

environmental statistics, and this effect is
mediated by the ACC. (a) Subjects underwent a

decision making task in which the reward rate

changed. Crucially, this changing reward rate went

through periods of stability and periods of

volatility (top panel). Optimal behavior requires

that the subjects estimate this volatility (bottom

panel) and adjust their learning rate accordingly.

(b) Subject learning rates (a) during the stable

and volatile phases of the experiment. Bars, mean

± s.e.m. for human subjects. Dots, optimal

learning rate. (c) A circumscribed region in the

ACC correlates with the volatility estimate (or the

related uncertainty). (d) Time course of the effect

size in ACC. BOLD signal is related to the

estimated volatility only when the outcome is

observed. (Reprinted with permission from

Behrens et al.5 (Nature Neuroscience)).
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that in stable conditions, new prediction errors have little effect on
future actions, in line with theoretical predictions. In fast-changing or
volatile situations, however, subjects learn quickly from new outcomes.
To achieve such flexible behavior, subjects must do more than simply
update the value of each action. They must also track the volatility, a
higher-order statistic of the environment. Theoretical accounts suggest
that volatility in the environment induces uncertainty in the current
estimate of value. In uncertain situations, subjects should give more
weight to new outcomes, implying a faster learning rate (Figs. 1
and 3)3–5. These crucial parameters of volatility and uncertainty
correlate with the BOLD response in the ACC sulcus at the time each
new outcome is observed—the crucial time for learning (Fig. 3).
Experimental controls in these studies allowed these signals influencing
the learning rate to be identified independently from signals represent-
ing the prediction error.

The learning rate dictates the extent to which an action’s expected
value is determined by its past history of reward—the reward integra-
tion curve. Under a fast learning rate, only the most recent outcomes
are relevant, whereas under a slow learning rate, even historical
outcomes have a bearing on the next decision (Fig. 4a). A learning
rate that is flexibly adapted to suit the reward environment can
therefore explain differences in the length of this curve that have
been reported in recent experiments33,41,42. For example, outcomes
from more than 30 trials ago still had some influence over the values of
choice options in one study41,43 (Fig. 4b), whereas a much shorter
reward integration period was reported in a similar task also performed
by macaques42 (Fig. 4c). In the former experiment, reward contingen-
cies remained stable for hundreds of trials, whereas in the latter
experiment, the monkeys experienced a volatile environment that
switched approximately every 25 trials. The importance of the ACC
in mediating the influence of the reward environment on the learning

rate and therefore on future actions is under-
lined by the finding that, after an ACC lesion,
only the outcome on the most recent trial
exerts any influence over subsequent deci-
sions42 (Fig. 4d).

There is further evidence that the ACC
mediates the degree to which an outcome

will guide learning and future behavior. In one study, human subjects
were scanned while they moved around a virtual maze that they had
previously explored outside the scanner44. The authors derived esti-
mates of subjects’ beliefs about their current maze positions on the
basis of the observations that the subjects were able to make at each
point in the virtual maze. The authors also estimated when the
observations the subjects made would have been discrepant with
previously held beliefs. On such trials, the feedback was especially
valuable and enabled subjects to most significantly revise their beliefs
about their positions in the maze. These same trials induced increases
in ACC activity.

Finally, a study discussed above25 also found a class of neuron with
activity that appeared to be independent of whether the response was
correct, but that diminished throughout the four trials of each block as
less and less could be learned from each new outcome. Such neurons
might be expected if the ACC were encoding the value of each new
outcome for learning. Taken together with the prediction error signals,
these findings suggest that ACC activity when new information is
observed reflects the extent to which the current outcome should
dictate future actions, or the value of information attained from the
current outcome.

Cingulate cortex and acquisition of new information

Knowing the value of information is not only essential when consider-
ing how much influence new outcomes should have in learning. The
value of potential information is another crucial factor determining
choice. Animals should be prepared to sacrifice immediate reward for
the opportunity to acquire information that will yield greater rewards
in the future. Several lines of converging evidence suggest that the ACC
is also active before a decision that could potentially yield information.
One direct test of the idea comes from situations wherein subjects are
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asked directly to sacrifice income for information. For example,
subjects were asked to choose repetitively between computer ‘bandits’
(slot machines) that paid out at different rates18. The payout rate of
each bandit was changing, such that the optimal behavior was not to
find the best bandit and exploit it continually, but rather to sporadically
explore the bandits to discover if the identity of the best bandit had
changed. By modeling subject learning, the authors were able identify
such sporadic exploration trials (in which the subjects did not choose
the option valued most highly at the time). These trials, in which the
subject chooses information over immediate reward, show an increase
in activation in the ACC and other frontal regions. In this task, subjects
clearly have mnemonic loads to juggle as they switch between bandits.
When subjects are simply asked to make their own choice of action,
ACC activation is also prominent44–46, especially when they attempt to
find the best course of action rather than when they are simply asked to
generate actions randomly29. In macaques learning, by trial and error,
the correct order in which to touch three targets to obtain a food
reward, ACC neurons that are active during the execution of responses
are more active when the macaques are searching for the correct order,
but they become less active once the correct order had been learned and
the macaque merely had to repeat it47.

The other clear situation in which subjects are asked to sacrifice
income for information comes from studies of social decision making.
Here the critical information that an individual needs to know
concerns the predispositions and actions of other agents, and, again,
a subregion of the ACC may be critical for the evaluation of informa-
tion obtained in a social context.

Male macaques value the opportunity to acquire information about
other macaques, particularly dominant males and females48,49—indi-
viduals that would normally have the highest potential impact on the
macaque’s own evolutionary fitness. Under normal circumstances,
male macaques will forego food to observe dominant males and
females, but this effect is abolished after a lesion of the ACC gyrus50

(Fig. 5). Lesions of the ACC sulcus, the region most important for
mediating the effect of reward history on decision making, or of the
OFC do not have the same effect. ACC, but not OFC, lesions in rodents
similarly devalue the acquisition of social information51.

Activation changes can also be recorded with fMRI in the ACC when
people witness decisions made by others or make decisions that will
influence others. Although the precise location of the activation
depends on whether they are making a decision or observing one,

the critical regions, as in the macaque, always appear to lie within the
ACC gyrus52. It may seem counterintuitive to compare the valuation of
social information to the valuation of information in reinforcement
learning models, and indeed social information has been argued to
impede the operation of feedback-based mechanisms of social learn-
ing53. Nevertheless, social expectations themselves are governed by
reinforcement learning principles; for example, social expectations
implicit in the intention to trust another individual seem to be
activated at increasingly early time points during successive social
exchanges, as would be predicted by reinforcement learning models54.
The activations recorded in ACC and adjacent medial frontal cortex
during social exchanges are enhanced when individuals believe that
they are interacting with another person as opposed to an artificial
agent such as a computer55. Such results raise the intriguing, but as yet
untested, possibility that parallel ACC sulcal and gyral mechanisms
encode the value of reward and social information for decision making.

Prefrontal cortex and reward expectation

Neurons with activity patterns that encode reward expectations have
also been reported in the prefrontal cortex, particularly in orbital
frontal cortex (OFC), in both macaques and rats56,57. Although there is
little evidence for a prediction error signal in the OFC and compara-
tively little information about actions to select rewards21,57–59, it is clear
that OFC neurons encode details concerning the identities of rewards;
in particular, their visual appearance, taste, smell and texture60,61. In
some cases, OFC activity encodes expectations about the receipt of a
reward of a particular magnitude59 and identity57,62. Several lines of
evidence suggest that the OFC is necessary for the representation of
the expected value of specific reinforcement outcomes. First, when
the value of an outcome is reduced by satiety, then the activity of OFC
neurons decreases. Satiety can be specific to a certain food type, and
satiety-related decrements in OFC neuron activity can also be specific
to a certain food63. OFC lesions disrupt the ability to adapt choices
in the light of a change in a reward’s value, either through satiety
or through an association with illness64–66, and the effects are specific
to choices guided by stimulus-reward associations rather than by
response-reward assocations58,67.

In some neurons, firing rate also varies with the value of whichever
outcome is expected, independently of the reward type68. When the
food choices of individual macaques are used to derive an operational
measure of their values, some OFC neurons’ activities increase in
proportion to the value that the individual animal assigns to the
expected reward type and the quantity expected. OFC activity encodes
the absolute value of the offer, at least in the short term, as the monkey
proceeds from one task trial to the next; a given neuron’s activity
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Figure 5 Anterior cingulate cortex and the valuation of social information.

The ACC gyrus is necessary for the normal valuation of social information.

Control macaques were slow to pick up food rewards in the presence of

pictures of conspecifics. Macaques with ACC gyrus lesions did not show

the normal pattern of preparedness to sacrifice food in order to acquire

information by observing pictures of other animals. The figure shows the

median latency to retrieve food in the presence of social stimuli—pictures

of unknown human actors (left) or macaques (right) shown to four groups
of macaques: unoperated controls, combined ventral and orbital prefrontal

lesions (PFv+o), ACC sulcus lesions and ACC gyrus lesions. Bars indicate

mean group performance. Letter and number pairs indicate performance of

individual macaques from the control group (C1–C4), ventral prefrontal and

orbital lesion group (V1–V3), ACC sulcus lesion group (S1–S3) and ACC gyrus

lesion group (G1–G3). Control macaques were slow to retrieve food in the

presence of social stimuli and, in general, their responses indicated that

pictures that one control found interesting, others often found interesting;

whereas pictures that one control found uninteresting, others found

uninteresting (note the general increase in black bar height moving from left

to right in the second part of the figure). This modulation of reaching latency

by social evaluation was absent in the animals with ACC gyrus lesions.

Reprinted with permission from Rudebeck et al.50 (Science).
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in response to a particular reward remains invariant regardless of
whether it is paired with a less or more preferred option62. Such
an activity pattern may underlie the transitivity of value judgments.
Over the longer term, however, OFC neuron activity recorded in
relation to a particular outcome expectation changes depending on
the other rewards that are available57, such that OFC neurons encoding
a particular reward will show more activity if this reward is the
preferred one among the options available. Such OFC activity might
underlie context-dependent preferences. Activity in parietal areas also
varies with the relative reward expectations associated with different
possible actions, but it is not clear whether regions outside the OFC
contain representations that are specific to both stimulus and outcome
and that contain at least some information about absolute value over
some time scales41,69.

Further support for the idea of value representations in the
orbitofrontal cortex has been adduced from human fMRI studies.
A consistent finding is that activity in a ventromedial prefrontal
cortex (VMPFC) is correlated with the expected reward in a great
many situations17,70–75. In one recent study74, hungry humans
were asked how much they would be prepared to pay for different
food items; VMPFC activity varied with the subjects’ valuation
of each item as judged by their willingness to pay. In another study72

(Fig. 6), a choice procedure was used to determine the value
assigned by different individuals to monetary rewards of different
sizes and expected delays. VMPFC activity was correlated with
individual valuations.

Integrating rewards and costs in decision making

It is tempting to relate the findings of VMPFC activation reported in
human subjects with studies of reward-related single-neuron activity in
the OFC of rats and macaques. Such an argument would tend to
conclude that the OFC represents value in an abstract and context-
independent manner that could provide a ‘common currency’ for
decision making. It is not clear, however, that it is correct to make this
argument. The precise location of the VMPFC activation varies from
one study to the next and even between subjects within a study72, but it
is usually located on the medial rather than the orbital surface (Fig. 6).
The neurons in the macaque, on the other hand, that have been
reported to encode value lie in a distinct region in the central part of
the orbital surface between the medial and lateral orbital sulci57,62.
Anatomically, the VMPFC region in humans and other primates
contains three distinct divisions—medial orbitofrontal cortex, ventral
cingulate cortex and posterior parts of the frontopolar cortex76,77—and

one could argue for identifying VMPFC activity with any of these three
main divisions. Even if VMPFC activations are within the OFC, then
they are likely to fall within its most medial part, which, in the
macaque, is strongly interconnected with the ACC and medial frontal
cortex but comparatively weakly interconnected with the remainder of
the OFC78. Very little is known of the functions or physiology of
macaque VMPFC.

Whereas many single-neuron studies have concentrated on the
encoding of rewards in a controlled learning environment, in real-life
situations, decisions and actions involve costs79. For example, a course
of action may lead to a benefit such as a large reward but only after a
cost, such as a long delay, is encountered. Both the reward and the cost
in conjunction determine a choice’s value. If the OFC does maintain a
context-independent representation of value as a common currency for
decision making, then OFC neurons that increase their firing rates in
relation to increases in the expected magnitude of a reward should also
decrease their activity in relation to the expected cost of the action.
Although this may occur in macaques80, such encoding is not readily
observable in the OFC of rats81 (Fig. 7). The discrepancy between
results in rat and monkey may reflect either a genuine species difference
or a difference in the extent of training (substantial and minimal in the
monkey and rat studies, respectively). Nevertheless, the evidence from
the rat suggests that OFC represents the costs of a choice option
independently from its associated reward magnitude81. The pattern
of results suggest that the distributed activity of OFC neurons does
not just encode the integrated current value of a choice outcome in a
unitary manner57,62,68, but also maintains a rich representation of
many aspects of an expected reward, including its intrinsic features,
such as its identity57,62,68, taste, smell and texture60,61. At least in
rodents, the OFC also encodes other variable reward features, such as
associated delay81 and spatial position82, that are also often important
for decision making.

OFC lesions alter decisions about rewards that are expected after a
delay83. Normally rats can learn to choose a course of action
that ultimately leads to a larger reward after a delay, but after OFC
lesions rats sometimes prefer actions that lead to an immediate small
reward84,85. The deficit suggests that the OFC is essential for
certain aspects of value representation, but it does not indicate a
fundamental impairment in all aspects of value representation because
animals with lesions in the OFC can make appropriate decisions when
the cost to be taken into account concerns the effort that must be
expended before the reward is acquired rather than a delay.
ACC lesions, by contrast, cause the opposite pattern: impairment in
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Figure 6 VMPFC activation and representation of subjective value. (a) Human

subjects made decisions about whether to opt for delayed monetary rewards

of various amounts at various delays or for a standard payment of US$20 that

would be made immediately. The rates at which the values of delayed rewards

were discounted by subjects were calculated from each individual’s choice

data. The resulting estimates of the subjective values of choice options were

then regressed against the fMRI-recorded brain activity. Activity in the

VMPFC and adjacent ACC and in the posterior cingulate cortex was better
correlated with (top) the subjective values of the choice options (yellow) than

with the objective amount of monetary reward (red) or with (bottom) the

objective delay to the monetary reward (red). Reprinted with permission from

Kable and Glimcher72 (Nature Neuroscience). (b) Subjects were shown

stimuli that predicted different reward magnitudes with different

probabilities. VMPFC activity (top, crosshairs) increased linearly both with

increasing reward probability and with increasing reward magnitude (bottom;

error bars, s.e.m.). Activity therefore encoded the expected value of the

stimulus. Reprinted with permission from Knutson et al.70 (Journal

of Neuroscience).
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effort-based decision making but normal performance on the delay-
based decision making task85–87.

Although the OFC maintains a rich and detailed representation of
the various features of a potential reward, such as its anticipated delay,
its relative value compared to other possible outcomes, and its
associations with objects and stimuli in the environment, it is possible
that the ACC represents the integrated value of a course of action to
reflect both the action’s intrinsic costs and benefits58. There are
certainly neurons in the ACC that reflect not just expected reward
but also progress through a course of actions toward the reward88,
as successive actions predict the same future reward but less future
incurred cost. Such a potential distinction between OFC and ACC is
reminiscent of the distinction89 between a goal-based representation
of rewards and the representation of an action’s cached value.
ACC-dependent reinforcement learning mechanisms may operate
on the integrated action value rather than operating independently
on costs and benefits and then combining the two. The precise
homologies between the rat ACC and the primate medial frontal
cortex are unclear, but several fMRI studies find value representations
in the human ACC as well as in adjacent parts of the medial frontal
cortex and VMPFC70,72,75.

Risk and decision costs

The values of rewards that are distant in time should be diminished
because there is risk as to whether or not the reward will ever be
delivered or whether the animal will be present if the reward eventually
becomes available. This risk represents a cost that should be taken into
account before the delayed reward is pursued and the animal forgoes
the opportunity to pursue alternative rewards.

The most direct way to investigate neural coding of risk is by
comparing responses to stimuli with different reward probabilities
(Fig. 1). Whereas activities in dopaminergic10 and striatal90 regions are
correlated with prediction risk that is temporally dissociated from their
phasic response to probability, similar responses in the lateral OFC
predict individual risk attitudes in decision making91.

A strong evolutionary correlate of risk is the delay to the time at
which a reward is expected, a further term sometimes used in
reinforcement learning equations (for example, equation (1)) for
updating expected value. As the size of the delay discounting term is
changed, rewards that are further away in time can come to have an
increasingly small impact on decision making, so that only the most
immediate rewards are treated as important. Several fMRI studies have
sought correlates of the discount term, reporting activity in lateral
prefrontal cortex (LPFC) and OFC17,71,92.

The previous section discussed the role of the OFC in representing
many aspects of potential reward expectations; related signals are also
seen in the LPFC. In the macaque, the LPFC, like the OFC, encodes
expectations of particular types and amounts of reward59,93,94, but
LPFC neurons also encode information about the monkey’s responses
and states of the environment95–97. LPFC neurons are therefore able to
represent the sequence of steps and state transitions that lead from the
present to the desired goal98,99. In addition, the ensemble of LPFC
neurons represents uncertainty about the agent’s position in the
unfolding plan. Human subjects’ conditional uncertainty about their
progress through a maze, estimated by a bayesian incremental belief-
updating approach, is correlated with activation in the LPFC44. In the
macaque, LPFC neurons encode particular routes through mazes, but
the emergence of distinctive encoding parallels the animal’s certainty, as
indexed by reaction time measures, concerning the best route to take to
obtain an eventual reward100. Because LPFC activity in delayed-reward
tasks does not scale with expected reward in a simple way17, it may not
be important for representing the distant rewards themselves. Instead,
LPFC activity may represent the environmental states and responses,
and uncertainty about those states and responses, during progression
toward a distant reward.

Summary and conclusions

Learning and decision making have been explained by formalisms such
as reinforcement learning, and activity in several brain areas has been
interpreted as reflecting components of reinforcement learning
mechanisms. Despite a justifiable focus on the striatum and the
dopaminergic system, a full account of the neural mechanisms of
learning and decision making also requires an understanding of
prefrontal and cingulate cortex. This evidence derives from neuroima-
ging studies that reflect indirect but pooled neuronal activity, from
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simple unitary code. (a) Population histogram representing firing rate as a
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(red) of 3 s (n ¼ 65). Activity is aligned on entry to the food well in order to

retrieve food pellets. Solid lines, preferred direction of food reward; dashed

lines, nonpreferred direction of food reward. The neurons were more active on

immediate reward trials than during expectation of delayed rewards. (b) In
contrast, other neurons were more active during expectation of delayed

rewards than immediate rewards (n ¼ 27). Regardless of the neurons’

preference for delay, there was no systematic tendency for the neurons to

have related preferences for reward size. (c,d) Relation of firing dependent on

delay length to firing dependent on reward size for those neurons that fired

more strongly after long delays. Neurons with a preference for immediate

reward delivery were no more likely to have a preference for larger rewards

(c), whereas neurons with a preference for later reward delivery were no more

likely to have a preference for small rewards (d). The delay index and reward

index are computed on the basis of firing during the reward epoch. Delay
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represent firing rates on big and small reward trials, respectively. Reprinted

with permission from Roesch et al.81 (Neuron).
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single-neuron recordings that may only focus on a subset of neurons
but confirm that the spiking output of these neurons represents the
signals, and from lesion studies that demonstrate the causal importance
of such activity for behavior.

Such evidence suggests that ACC activity preceding a decision
encodes the integrated value of an action, whether in terms of
immediate gains and costs or in terms of information to aid future
decision making. On the observation of an outcome, ACC activity
encodes the degree to which the resulting information should influence
future decisions. A functional division may exist in the ACC between
the sulcus, implicated in reward-based learning and decision making,
and the gyrus, implicated in social learning and decision making.
Although in some circumstances OFC activity encodes integrated value
signals, OFC activity also contains information about a wealth of other
features that define reinforcement goals.
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