Appunti per Geometria e Algebra Computazionale 1. Generalità sull'anello dei polinomi

Corso di Laurea in Matematica, Università di Firenze, 2019/20

Giorgio Ottaviani

7 marzo 2020

$K[x_1,\ldots,x_n]$ è un UFD

Clicca per audio, usa "spazio" per pausa

Sia K un campo. Siamo interessati all'anello dei polinomi $K[x_1,\ldots,x_n]$. Come esempi consideriamo $K=\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Z}_p$ (quest'ultimo campo con p primo, $p\gg 0$ è molto utilizzato in computer algebra e può simulare con maggiore efficienza un campo di caratteristica zero quando i coefficienti dei polinomi in gioco sono "piccoli"). Useremo la seguente proprietà, nota dai corsi di Algebra:

$K[x_1,\ldots,x_n]$ è un UFD

Clicca per audio, usparajo" per pausa

Sia K un campo. Siamo interessati all'anello dei polinomi $K[x_1,\ldots,x_n]$. Come esempi consideriamo $K=\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Z}_p$ (quest'ultimo campo con p primo, $p\gg 0$ è molto utilizzato in computer algebra e può simulare con maggiore efficienza un campo di caratteristica zero quando i coefficienti dei polinomi in gioco sono "piccoli"). Useremo la seguente proprietà, nota dai corsi di Algebra:

Teorema

Gauss $K[x_1,...,x_n]$ è un dominio a fattorizzazione unica (UFD) cioè ogni polinomio si decompone in modo unico come prodotto di fattori irriducibili.

$K[x_1,\ldots,x_n]$ è Noetheriano

Clicca per audio, usprazio" per pausa

Ricordiamo che un anello A si dice <u>noetheriano</u> 1 se ogni suo ideale è finitamente generato. Questo equivale alla condizione della catena ascendente, cioè ogni catena ascendente di ideali $I_1 \subset I_2 \subset I_3 \subset \ldots$ è stazionaria nel senso che \exists n tale che $I_n = I_{n+1} = I_{n+2} = \ldots$ In particolare ogni campo K è noetheriano perché gli unici suoi

In particolare ogni campo K è noetheriano perché gli unici suoi ideali sono 0 e K.

¹in ricordo di Emmy Noether (1882-1935)

$K[x_1,\ldots,x_n]$ è Noetheriano

Clicca per audio, usa "spazio" per pausa

Ricordiamo che un anello A si dice <u>noetheriano</u> 1 se ogni suo ideale è finitamente generato. Questo equivale alla condizione della catena ascendente, cioè ogni catena ascendente di ideali $I_1 \subset I_2 \subset I_3 \subset \ldots$ è stazionaria nel senso che \exists n tale che $I_n = I_{n+1} = I_{n+2} = \ldots$

In particolare ogni campo K è noetheriano perché gli unici suoi ideali sono 0 e K.

Teorema

Teorema della base di Hilbert.(Basissatz) Sia R un anello.

 $R \ \text{\'e} \ noetheriano} \Longrightarrow R[x] \ \text{\'e} \ noetheriano}$

¹in ricordo di Emmy Noether (1882-1935)